Skip to main content

Visual-Tactile Fusion for a Low-Cost Desktop Robotic Manipulator Grasping

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1005))

Included in the following conference series:

  • 1057 Accesses

Abstract

Desktop manipulators have found extensive applications in the factory, home, and classroom. However, existing customized desktop manipulators have hardly equipped sensors to percept the environment. In this paper, we develop a low-cost solution to this issue, by equipping an ordinary camera and tactile sensors to an off-the-shelf desktop manipulator. This integrated system uses the image to coarsely localize the objects on the desk and drives the end-effector to approach the object. During the grasping procedure, a flex sensor is used for precisely localizing the objects and a set of force sensors fixed on the gripper can be used to classify the objects according to their materials or deformability. All of the hardware units can be easily purchased and the total cost is under $500. We also made extensive experimental validation on the fruits classification task to show the advantages of the developed manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quigley, M., Asbeck, A., Ng, A.: A low-cost compliant 7-DOF robotic manipulator. In: IEEE International Conference on Robotics & Automation (ICRA), pp. 6051–6058 (2011)

    Google Scholar 

  2. Decherchi, S., Gastaldo, P., Dahiya, R.S., Valle, M., Zunino, R.: Tactile data classification of contact materials using computational intelligence. IEEE Trans. Robot. 27(3), 635–639 (2011)

    Article  Google Scholar 

  3. Wettels, N., Loeb, G.: Haptic feature extraction from a biomimetic tactile sensor: force, contact location and curvature. In: IEEE International Conference on Robotics and Biomimetics, (ROBIO), pp. 2471–2478 (2011)

    Google Scholar 

  4. Liu, H., Song, X., Bimbo, J., Seneviratne, L., Althoefer, K.: Surface material recognition through haptic exploration using an intelligent contact sensing finger. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS), pp. 52–57 (2012)

    Google Scholar 

  5. Bekiroglu, Y., Laaksonen, J., Jorgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Robot. 27, 616–629 (2011)

    Article  Google Scholar 

  6. Teshigawara, S., et al.: Highly sensitive sensor for detection of initial slip and its application in a multi-fingered robot hand. In: IEEE International Conference on Robotics and Automation, (ICRA), pp. 1097–1102 (2011)

    Google Scholar 

  7. Dahiya, R., Valle, M.: Tactile sensing technologies. In: Robotic Tactile Sensing, pp. 79–136. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-0579-1_5

  8. Interlink electronics products. http://www.interlinkelectronics.com/standard-products.php

  9. Tekscan, Flexiforce. http://www.tekscan.com/flexiforce.html

  10. W. Robotics Tactile sensors. http://weiss-robotics.de/en/tactile-sensors.html

  11. PPS, Tactile sensors. http://www.pressureprofile.com/products.php

  12. Balasubramania, R., Santos, V.J.: The Human Hand as an Inspiration for Robot Hand Development. Springer Tracts in Advanced Robotics, vol. 95. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03017-3

    Book  Google Scholar 

  13. Teshigawara, S., Shimizu, S., Tadakuma, K., Aiguo, M., Shimojo, M., Ishikawa, M.: High sensitivity slip sensor using pressure conductive rubber. In: Sensors, pp. 988–991. IEEE (2009)

    Google Scholar 

  14. Seminara, L., Capurro, M., Cirillo, P., Cannata, G., Valle, M.: Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sens. Actuators, A 169(1), 49–58 (2011)

    Article  Google Scholar 

  15. Li, R., Adelson, E.: Sensing and recognizing surface textures using a gelsight sensor. In: IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), pp. 1241–1247 (2013)

    Google Scholar 

  16. Romano, J., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Robot. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  17. Drimus, A., Kootstra, G., Bilberg, A., et al.: Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot. Auton. Syst. 62(1), 3–15 (2014)

    Article  Google Scholar 

  18. Su, J., Ko, W., Liu, Y., et al.: Design of tactile sensor array on electric gripper jaws for wire gripping recognition. In: IEEE International Conference on Automation Science and Engineering (CASE), pp. 1014–1019 (2014)

    Google Scholar 

  19. Chitta, S., Sturm, J., Piccoli, M., et al.: Tactile sensing for mobile manipulation. IEEE Trans. Robot. 27(3), 558–568 (2011)

    Article  Google Scholar 

  20. Heyneman, B., Cutkosky, M.: Biologically inspired tactile classification of object-hand and object-world interactions. In: IEEE International Conference on Robotics and Biomimetics, (ROBIO), pp. 167–173 (2012)

    Google Scholar 

  21. Chavan-Dafle, N., et al.: A two-phase gripper to reorient and grasp. In: IEEE International Conference on Automation Science and Engineering (CASE), pp. 1249–1255 (2015)

    Google Scholar 

  22. Robotic arm from UFactory. http://store.ufactory.cc/uarm-metal/

  23. Torobot gripper. https://item.taobao.com/item.htm?spm=a1z10.5-c.w4002-3333837250.41.AG3VEM&id=15612603053

  24. Cheng, M., Zhang, Z., Lin, W., et al.: BING: binarized normed gradients for objectness estimation at 300fps. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  25. MicroController Pros LLC, Flex sensor. http://microcontrollershop.com/product_info.php?products_id=4496

  26. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006). https://doi.org/10.1007/978-1-4615-7566-5

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Fan or Ziwei Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, L., Xia, Z., Yang, Y. (2019). Visual-Tactile Fusion for a Low-Cost Desktop Robotic Manipulator Grasping. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2018. Communications in Computer and Information Science, vol 1005. Springer, Singapore. https://doi.org/10.1007/978-981-13-7983-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7983-3_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7982-6

  • Online ISBN: 978-981-13-7983-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics