Skip to main content

Computing and Visualizing Taxi Cab Dynamics as Proxies for Autonomous Mobility on Demand Systems

The Case of the Chicago Taxi Cab System

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. "Hello, Culture" (CAAD Futures 2019)

Abstract

Despite the expansion of shared mobility-on-demand (MoD) systems as sustainable modes of urban transport, a growing debate among planners and urban scientists regarding what constitutes cost and how to compute it, divides opinions on the benefits that autonomous MoD systems may bring. We present a comprehensive definition of cost of traveling by MoD systems as the cost of the vehicle hours (VH), the vehicle-hours-traveled (VHT), the vehicle-hours-dispatched (VHD), and the vehicle-hours-parked (VHP) required to serve a pattern of trips. Next, we discuss an approach to estimate empty (dispatch) trips and idle periods from a user trip dataset. Finally, we model, compute, and visualize the relationship between the dynamics of VHP, VHT, and VHD using Chicago’s taxi cab system as a case. Our results show that the total fleet of taxis in Chicago can decrease by 51% if all trips, currently served by conventional taxis, were served by autonomous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaheen, S., Cohen, A.: Innovative Mobility Carsharing Outlook. Transportation Sustainability Research Center, University of California, Berkeley (2016)

    Google Scholar 

  2. Steininger, K., Vogl, C., Zettl, R.: Car-sharing organizations: the size of the market segment and revealed change in mobility behavior. Transp. Policy 3, 177–185 (1996)

    Article  Google Scholar 

  3. Shaheen, S., Rodier, C.: Travel effects of a suburban commuter carsharing service: CarLink case study. Transp. Res. Rec. J. Transp. Res. Board. 1927, 182–188 (2005)

    Article  Google Scholar 

  4. Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M.: Toward a Systematic Approach to the Design and Evaluation of Automated Mobility-on-Demand Systems: A Case Study in Singapore. Frazzoli (2014)

    Google Scholar 

  5. Fagnant, D.J., Kockelman, K.M.: The travel and environmental implications of shared autonomous vehicles, using agent- based model scenarios. Transp. Res. Part C 40, 1–13 (2014)

    Article  Google Scholar 

  6. Chen, T.D., Kockelman, K.M., Hanna, J.P.: Operations of a shared, autonomous, electric vehicle fleet: implications of vehicle & charging infrastructure decisions. Transp. Res. Part A 94, 243–254 (2016). https://doi.org/10.1016/j.tra.2016.08.020

    Article  Google Scholar 

  7. Papanikolaou, D.: The Potential of On-demand Urban Mobility: Lessons from System Analysis and Data Visualization (2016)

    Google Scholar 

  8. Fagnant, D.J., Kockelman, K.M., Bansal, P.: Operations of shared autonomous vehicle fleet for Austin, Texas. Market. Transp. Res. Rec. J. Transp. Res. Board. 2536, 98–106 (2015). https://doi.org/10.3141/2536-12

    Article  Google Scholar 

  9. Papanikolaou, D.: Data-driven state space reconstruction of mobility on demand systems for sizing-rebalancing analysis. In: Proceedings of the 2018 Symposium on Simulation for Architecture and Urban Design (SimAUD 2018). Technical University of Delft, Netherlands (2018)

    Google Scholar 

  10. George, D., Xia, C.: Fleet-sizing and service availability for a vehicle rental system via closed queueing networks. Eur. J. Oper. Res. 211, 198–207 (2011). https://doi.org/10.1016/j.ejor.2010.12.015

    Article  MathSciNet  MATH  Google Scholar 

  11. Dell’Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S.: The bike sharing rebalancing problem: mathematical formulations and benchmark instances. Omega 45, 7 (2014)

    Article  Google Scholar 

  12. Chemla, D., Meunier, F., Wolfler Calvo, R.: Bike sharing systems: solving the static rebalancing problem. Discrete Optim. 10, 120–146 (2013). https://doi.org/10.1016/j.disopt.2012.11.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Kloimüllner, C., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing systems: an approach for the dynamic case. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 73–84. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44320-0_7

    Chapter  Google Scholar 

  14. Pavone, M., Treleaven, K., Frazzoli, E.: Fundamental performance limits and efficient polices for transportation-on-demand systems. In: 49th IEEE Conference on Decision and Control, CDC 2010, pp. 5622–5629 (2010). https://doi.org/10.1109/cdc.2010.5717552

  15. McNally, M.G., Rindt, C.: The Activity-Based Approach (2008)

    Google Scholar 

  16. Liu, Y., Wang, F., Xiao, Y., Gao, S.: Urban land uses and traffic ‘source-sink areas’: evidence from GPS- enabled taxi data in Shanghai. Landsc. Urban Plan. 106, 73–87 (2012)

    Article  Google Scholar 

  17. González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453, 779 (2008)

    Article  Google Scholar 

  18. Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6, 818 (2010). https://doi.org/10.1038/nphys1760

    Article  Google Scholar 

  19. Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C.: Scaling laws for the movement of people between locations in a large city. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 68, 066102 (2003)

    Google Scholar 

  20. Liang, X., Zheng, X., Lv, W., Zhu, T., Xu, K.: The scaling of human mobility by taxis is exponential. Phys. Stat. Mech. Appl. 391, 2135–2144 (2012)

    Article  Google Scholar 

  21. Phithakkitnukoon, S., Veloso, M., Bento, C., Biderman, A., Ratti, C.: Taxi-aware map: identifying and predicting vacant taxis in the city. In: de Ruyter, B., et al. (eds.) AmI 2010. LNCS, vol. 6439, pp. 86–95. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16917-5_9

    Chapter  Google Scholar 

  22. Kang, C., Ma, X., Tong, D., Liu, Y.: Intra-urban human mobility patterns: an urban morphology perspective. Phys. Stat. Mech. Appl. 391, 1702–1717 (2012)

    Article  Google Scholar 

  23. Scholz, R.W., Lu, Y.: Detection of dynamic activity patterns at a collective level from large-volume trajectory data. Int. J. Geogr. Inf. Sci. 28, 1–18 (2014)

    Article  Google Scholar 

  24. Sun, J.B., Yuan, J., Wang, Y., Si, H.B., Shan, X.M.: Exploring space–time structure of human mobility in urban space. Phys. Stat. Mech. Appl. 390, 929–942 (2011)

    Article  Google Scholar 

  25. Kung, K.S., Greco, K., Sobolevsky, S., Ratti, C.: Exploring universal patterns in human home- work commuting from mobile phone data. PLoS ONE 9, e96180 (2014)

    Article  Google Scholar 

  26. Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., Ratti, C.: Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp. Res. Part C 26, 301–313 (2013). https://doi.org/10.1016/j.trc.2012.09.009

    Article  Google Scholar 

  27. Liu, X., Gong, L., Gong, Y., Liu, Y.: Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 43, 78–90 (2015). https://doi.org/10.1016/j.jtrangeo.2015.01.016

    Article  Google Scholar 

  28. Padgham, M.: Human movement is both diffusive and directed. PLoS ONE 7, e37754 (2012)

    Article  Google Scholar 

  29. Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R.: Urban cycles and mobility patterns: exploring and predicting trends in a bicycle- based public transport system. Pervasive Mob. Comput. 6, 455–466 (2010). https://doi.org/10.1016/j.pmcj.2010.07.002

    Article  Google Scholar 

  30. Vogel, P., Greiser, T., Mattfeld, D.C.: Understanding bike-sharing systems using data mining: exploring activity patterns. Procedia - Soc. Behav. Sci. 20, 514–523 (2011)

    Article  Google Scholar 

  31. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31190-4

    Book  MATH  Google Scholar 

  32. Shalizi, C.R.: Methods and techniques of complex systems science: an overview. In: Thomas, D., Yasha, K. (eds.) Complex Systems Science in Biomedicine, pp. 33–114. Springer, New York (2006). https://doi.org/10.1007/978-0-387-33532-2_2

    Chapter  Google Scholar 

  33. Haghani, A., Lee, S.Y., Byun, J.H.: A system dynamics approach to land use/transportation system performance modeling part I: methodology. J. Adv. Transp. 37, 1–41 (2003)

    Article  Google Scholar 

  34. Batty, M.: The New Science of Cities. MIT Press, Cambridge (2013)

    Book  Google Scholar 

  35. Forrester, J.W.: Urban Dynamics. MIT Press, Cambridge (1969)

    Google Scholar 

Download references

Acknowledgments

The research presented in this paper has been partially funded by UNCC’s Faculty Research Grant (funding cycle 2018-2019). The Chicago taxi trip dataset is publicly available and can be downloaded via the Socrata Open Data API through the following link: https://dev.socrata.com/foundry/data.cityofchicago.org/wrvz-psew. Figure 2 credits: Atefeh Mahdavi Goloujeh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Papanikolaou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papanikolaou, D. (2019). Computing and Visualizing Taxi Cab Dynamics as Proxies for Autonomous Mobility on Demand Systems. In: Lee, JH. (eds) Computer-Aided Architectural Design. "Hello, Culture". CAAD Futures 2019. Communications in Computer and Information Science, vol 1028. Springer, Singapore. https://doi.org/10.1007/978-981-13-8410-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8410-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8409-7

  • Online ISBN: 978-981-13-8410-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics