Skip to main content

Design of Synthetic 3-D Pulmonary Phantoms Using 2-D Graphical User Interface

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2018)

Abstract

Analysis of pulmonary artery or vein tree has utmost importance in the study and clinical diagnosis of Chronic Obstructive Pulmonary Diseases (COPD). Due to difficulty in acquiring real life patient data and highly complex structure of artery/vein tree, design of imitated/approximate digital pulmonary phantoms for experimental purposes is an active research area. In this work, we discuss theory and methods of designing 3-D mathematical phantoms based on real pulmonary data using a custom made Graphical User Interface (GUI). These approximate phantoms are made using 3-D spheres as the basic unit which are placed in 3-D space using cubic Bezier curves. Results and design steps are explained using appropriate 3-D rendering of digital phantoms developed by our GUI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33, 190–197 (1973)

    Google Scholar 

  2. Murphy, T.F., Sethi, S.: Chronic obstructive pulmonary disease. Drugs Aging 19, 761–775 (2002)

    Google Scholar 

  3. Fletcher, M., et al.: COPD uncovered: an international survey on the impact of chronic obstructive pulmonary disease [COPD] on a working age population. BMC Public Health 11, 1–13 (2011)

    Google Scholar 

  4. Gurney, J.W., et al.: Regional distribution of emphysema: correlation of high-resolution CT with pulmonary function tests in unselected smokers. Radiology 183, 457–463 (1992)

    Google Scholar 

  5. Das, N., Rakshit, P., Nasipuri, M., Basu, S.: 3-D digital flows in cerebrovascular phantoms. In: 9th International Conference on Pattern Recognition, ICAPR 2017, ISI, Bangalore (2011)

    Google Scholar 

  6. Gao, Z., Grout, R.W., Holtze, C., Hoffman, E.A., Saha, P.: A new paradigm of interactive artery/vein separation in noncontrast pulmonary CT imaging using multiscale topomorphologic opening. IEEE Trans. Biomed. Eng. 59, 3016–3027 (2012)

    Google Scholar 

  7. Cai, Z., Bai, E.: A Dynamic Arterial Tree Phantom for studies of bolus chasing CT Angiography Robert McCabe CIRS Tissue Simulation and Phantom Technology. Ge Wang Madhavan Lakshmi Raghavan and Jarin Kratzberg 4, 88–100 (2010)

    Google Scholar 

  8. Saha, P.K., Gao, Z., Alford, S.K., Sonka, M., Hoffman, E.A.: Topomorphologic separation of fused isointensity objects via multiscale opening: separating arteries and veins in 3-D pulmonary CT. IEEE Trans. Med. Imaging 29, 840–851 (2010)

    Google Scholar 

  9. Saha, P.K., Basu, S., Hoffman, E.A.: Multiscale opening of conjoined fuzzy objects: theory and applications. IEEE Trans. Fuzzy Syst. 24, 1121–1133 (2016)

    Google Scholar 

  10. Brunette, J., Mongrain, R., Ranga, A., Tardif, J.-C.: An atherosclerotic coronary artery phantom for particle image velocimetry. Proc. Can. Eng. Educ. Assoc. 2(2) (2011)

    Google Scholar 

  11. Le Floc’h, S., Cloutier, G., Finet, G., Tracqui, P., Pettigrew, R.I., Ohayon, J.: On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study. Phys. Med. Biol. 55, 5701–5721 (2010)

    Google Scholar 

  12. Hansen, H.H.G., Lopata, R.G.P., De Korte, C.L.: Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms. IEEE Trans. Med. Imaging 28, 872–880 (2009)

    Google Scholar 

  13. De Santis, G., De Beule, M., Van Canneyt, K., Segers, P., Verdonck, P., Verhegghe, B.: Full-hexahedral structured meshing for image-based computational vascular modeling. Med. Eng. Phys. 33, 1318–1325 (2011)

    Google Scholar 

  14. Piccinelli, M., Veneziani, A., Steinman, D.A., Remuzzi, A., Antiga, L.: A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging 28, 1141–1155 (2009)

    Google Scholar 

  15. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46, 1097–1112 (2008)

    Google Scholar 

  16. Zhu, H., Ding, Z., Piana, R.N., Gehrig, T.R., Friedman, M.H.: Cataloguing the geometry of the human coronary arteries: a potential tool for predicting risk of coronary artery disease. Int. J. Cardiol. 135, 43–52 (2009)

    Google Scholar 

  17. Banerjee, A., Dey, S., Parui, S., Nasipuri, M., Basu, S.: Design of 3-D phantoms for human carotid vasculature. In: Proceedings of the 2013 3rd International Conference on Advances in Computing and Communications, ICACC 2013, pp. 347–350 (2013)

    Google Scholar 

  18. Banerjee, A., Dey, S., Parui, S., Nasipuri, M., Basu, S.: Synthetic reconstruction of human carotid vasculature using a 2-D/3-D interface. In: ICACCI, pp. 60–65 (2013)

    Google Scholar 

  19. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34, 344–371 (1986)

    Google Scholar 

  20. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vis. Graph. Image Process. 27, 321–345 (1984)

    Google Scholar 

  21. Danielsson, P.E.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980)

    Google Scholar 

  22. Cuisenaire, O., Macq, B.: Fast Euclidean distance transformation by propagation using multiple neighborhoods. Comput. Vis. Image Underst. 76, 163–172 (1999)

    Google Scholar 

  23. Abrahamsen, A.: Cubic Bézier curves. In: Control, pp. 1–4 (2000)

    Google Scholar 

  24. itk-SNAP Homepage. http://www.itksnap.org/pmwiki/pmwiki.php. Accessed 07 Apr 2018

  25. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006)

    Google Scholar 

  26. Qt Homepage. https://www.qt.io. Accessed 03 Apr 2018

Download references

Acknowledgement

This project is partially supported by the CMATER research laboratory of the Computer Science and Engineering Department, Jadavpur University, India, DST PURSE-II and UPE-II project and Research Award (F.30-31/2016(SA-II)) from UGC, Government of India and CSIR-HRDG, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadip Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De, A., Das, N., Sarkar, R., Saha, P.K., Basu, S. (2019). Design of Synthetic 3-D Pulmonary Phantoms Using 2-D Graphical User Interface. In: Mandal, J., Mukhopadhyay, S., Dutta, P., Dasgupta, K. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2018. Communications in Computer and Information Science, vol 1030. Springer, Singapore. https://doi.org/10.1007/978-981-13-8578-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8578-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8577-3

  • Online ISBN: 978-981-13-8578-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics