Skip to main content

Mutual Information –The Biomarker of Essential Gene Predictions in Gene-Gene-Interaction of Lung Cancer

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2018)

Abstract

Lung cancer is a biggest epidemic in current decade. Recent statistical results clearly accounted that higher percentage of male and female had been under its trap. Researchers are engaged by themselves to reduce its percentage periodically. It is observed that macromolecules acted as an essential role in this improvement. One of the important macromolecules of life is gene and its complex. Genes in interaction participates in more number of functional activities as compared to individuals. Normally, similar set i.e. functionally similar set of genes stay in same network. Initially the proposed work starts with gene expression microarray dataset which consists of sets of both normal as well as disease gene samples. A total collection of 7129 genes are involved in the dataset out of which 3556 variant set of genes have been filtered out by applying two-tailed T-test. Hence Mutual information and K -means clustering algorithms are executed on these variant set of genes to obtain most similar set of genes. Interactions of these filtered genes have been studied using String DB and Gene Mania from where the most reliable genes have been retained using node and edge weight. 109 most reliable genes are finally identified as diver nodes or controller genes which can play an essential role in lung cancer. Our methodology achieves an overall accuracy of 88%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackhall, L., Hill, D.J.: On the structural controllability of networks of linear systems. IFAC Proc. Vol. (IFAC-PapersOnline) 43 245–250 (2010)

    Google Scholar 

  2. Liu, Y.Y., Slotine, J.J., Barabasi, A.L.: Control centrality and hierarchical structure in complex networks. PLoS One 7, e44459 (2012)

    Article  Google Scholar 

  3. Müller, F.-J., Schuppert, A.: Few inputs can reprogram biological networks. Nature 478, E4 (2011)

    Article  Google Scholar 

  4. Wang, W.X., Ni, X., Lai, Y.C., Grebogi, C.: Optimizing controllability of complex networks by minimum structural perturbations. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 85, 026115 (2012)

    Article  Google Scholar 

  5. Mesbahi, M., Egerstedt, M.: Graph theoretic methods in multiagent networks (2010)

    Google Scholar 

  6. Nepusz, T., Vicsek, T.: Controlling edge dynamics in complex networks. Nat. Phys. 8, 568–573 (2012)

    Article  Google Scholar 

  7. Cowan, N.J., Chastain, E.J., Vilhena, D.A., Freudenberg, J.S., Bergstrom, C.T.: Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PLoS One 7, e38398 (2012)

    Article  Google Scholar 

  8. Liu, X., Pan, L.: Identifying driver nodes in the human signaling network using structural controllability analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 467–472 (2015)

    Article  Google Scholar 

  9. Nacher, J.C., Akutsu, T.: Analysis on controlling complex networks based on dominating sets. J. Phys. Conf. Ser. 410, 12104 (2013)

    Article  Google Scholar 

  10. Jeong, H., Mason, S.P., Barabási, a L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Google Scholar 

  11. Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473, 167–173 (2011)

    Article  Google Scholar 

  12. Wuchty, S.: Controllability in protein interaction networks. Proc. Nat. Acad. Sci. U.S.A 111, 7156–7160 (2014)

    Article  Google Scholar 

  13. Zhang, X.F., Ou-Yang, L., Zhu, Y., Wu, M.Y., Dai, D.Q.: Determining minimum set of driver nodes in protein-protein interaction networks. BMC Bioinform. 16, 146 (2015)

    Article  Google Scholar 

  14. Barabasi, A.-L., Oltvai, Z.N.Z.N., Barabási, A.-L.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)

    Article  Google Scholar 

  15. Yu, H., et al.: High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008)

    Article  Google Scholar 

  16. Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness (1977). http://www.jstor.org/stable/3033543?origin=crossref

  17. Vinayagam, A., et al.: Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc. Nat. Acad. Sci. U.S.A. 113(18), 4979–4981 (2016). 1603992113

    Article  Google Scholar 

  18. Warde-Farley, D., et al.: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 (2010)

    Article  Google Scholar 

  19. Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench. In: Proceedings of ANZIIS 1994 - Australian New Zealnd Intelligent Information Systems Conference, pp. 357–361 (1994)

    Google Scholar 

  20. Venables, W.N., Smith, D.M.: R core team: an introduction to R. User Man. 2, 99 (2015)

    Google Scholar 

  21. Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Characterizing gene sets with FuncAssociate. Bioinformatics 19, 2502–2504 (2003)

    Article  Google Scholar 

  22. Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Observability of complex systems. Proc. Nat. Acad. Sci. U.S.A. 110, 2460–2465 (2013)

    Article  MathSciNet  Google Scholar 

  23. Basler, G., Nikoloski, Z., Larhlimi, A., Barabási, A.L., Liu, Y.Y.: Control of fluxes in metabolic networks. Genome Res. 26, 956–968 (2016)

    Article  Google Scholar 

  24. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)

    Article  Google Scholar 

  25. Pandey, G., Kumar, V., Steinbach, M.: Computational approaches for protein function prediction a survey. Pediatrics 108, 197–205 (2006)

    Google Scholar 

  26. Zur, H., Tuller, T.: New universal rules of eukaryotic translation initiation fidelity. PLoS Comput. Biol. 9, e1003136 (2013)

    Article  Google Scholar 

  27. Walther, C., Lüdeke, M., Janssen, P.: Cluster analysis to understand socio-ecological systems: a guideline. PIK Rep. 2–90 (2012)

    Google Scholar 

  28. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  29. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  30. Gola, D., Mahachie John, J.M., Van Steen, K., König, I.R.: A roadmap to multifactor dimensionality reduction methods. Brief. Bioinform. 17, 293–308 (2016)

    Article  Google Scholar 

  31. Gray, R.M.: Entropy and information theory (2011)

    Google Scholar 

  32. Casini, H., Huerta, M., Myers, R.C., Yale, A.: Mutual information and the F-theorem. J. High Energy Phys. 2015(10), 3 (2015)

    Article  MathSciNet  Google Scholar 

  33. Wang, S., Wu, F.: Detecting overlapping protein complexes in PPI networks based on robustness. Proteome Sci. 11, S18 (2013)

    Article  Google Scholar 

  34. Beer, D.G., et al.: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816–824 (2002)

    Article  Google Scholar 

  35. de Matos Simoes, R., Emmert-Streib, F.: Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks. PLoS One 6(12), e29279 (2011)

    Article  Google Scholar 

  36. Tang, Y., Li, M., Wang, J., Pan, Y., Wu, F.X.: CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. BioSystems 127, 67–72 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Kumar Payra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Payra, A.K., Ghosh, A. (2019). Mutual Information –The Biomarker of Essential Gene Predictions in Gene-Gene-Interaction of Lung Cancer. In: Mandal, J., Mukhopadhyay, S., Dutta, P., Dasgupta, K. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2018. Communications in Computer and Information Science, vol 1031. Springer, Singapore. https://doi.org/10.1007/978-981-13-8581-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8581-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8580-3

  • Online ISBN: 978-981-13-8581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics