Abstract
With rapid technological advancements, smart systems have become an integral part of human environments. Capabilities of such systems are evolving constantly, resulting in broad areas of specific applications, ranging from personal to business and industrial use cases. This has encouraged the development of complex heterogeneous service ecosystems able to perform a wide variety of specific functionalities deployed on diverse physical nodes. Consequently, it has become a greater challenge to both maintain optimal resource utilization and achieve reliable management and orchestration of available services. For this purpose, we propose an agent-based system capable of orchestrating services on system nodes based on current context. This enables simplification of large-scale systems by introducing a generic set of services available to all nodes in the system, while service activation depends on environment state. The proposed solution provides flexibility in versatile environments typically encountered in domains such as smart homes and buildings, smart cities, and Industry 4.0. Additionally, it enables reduced consumption of resources on a given physical node. The described system is evaluated using a case study in the smart building environment, where it is shown how the proposed model can simplify the system and reduce resource utilization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wollschlaeger, M., Sauter, T., Jasperneite, J.: The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind. Electron. Mag. 11(1), 17–27 (2017)
Wang, S., Wan, J., Zhang, D., Li, D., Zhang, C.: Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 101, 158–168 (2016)
Hossain, M.M., Fotouhi, M., Hasan, R.: Towards an analysis of security issues, challenges, and open problems in the internet of things. In: IEEE World Congress on Services, pp. 21–28 (2015)
Leitão, P., Mařík, V., Vrba, P.: Past, present, and future of industrial agent applications. IEEE Trans. Ind. Inform. 9(4), 2360–2372 (2013)
Monostori, L.: Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)
Lu, Y.: Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)
Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016)
Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Design Automation Conference, 47th ACM/IEEE, pp. 731–736 (2010)
Cristalli, C., Foehr, M., Jäger, T., Leitao, P., Paone, N., Castellini, P., Turrin, C., Schjolberg, I.: Integration of process and quality control using multi-agent technology. In: 2013 IEEE International Symposium on Industrial Electronics (ISIE), pp. 1–6, (2013)
Marín, C.A., Monch, L., Leitao, P., Vrba, P., Kazanskaia, D., Chepegin, V., Liu, L., Mehandjiev, N.: A conceptual architecture based on intelligent services for manufacturing support systems. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4749–4754 (2013)
Soic, R., Skocir, P., Jezic, G.: Agent-based system for context-aware human-computer interaction. In: KES International Symposium on Agent and Multi-Agent Systems: Technologies and Applications, pp. 34–43 (2018)
Cai, H., Xu, B., Jiang, L., Vasilakos, A.V.: IoT-based big data storage systems in cloud computing: perspectives and challenges. IEEE IoT J. 4(1), 75–87 (2017)
López, G., Quesada, L., Guerrero, L.A.: Alexa vs. Siri vs. Cortana vs. Google Assistant: a comparison of speech-based natural user interfaces. In: International Conference on Applied Human Factors and Ergonomics, pp. 241–250 (2017)
Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the industry 4.0 era. In: 2014 12th IEEE International Conference on Industrial Informatics (INDIN), pp. 289–294 (2014)
Acknowledgements
This work has been supported in part by Croatian Science Foundation under the project 6917 “High-Quality Speech Synthesis for Croatian language” (HR-SYNTH).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Soic, R., Vukovic, M., Skocir, P., Jezic, G. (2020). Context-Aware Service Orchestration in Smart Environments. In: Jezic, G., Chen-Burger, YH., Kusek, M., Šperka, R., Howlett, R., Jain, L. (eds) Agents and Multi-agent Systems: Technologies and Applications 2019. Smart Innovation, Systems and Technologies, vol 148. Springer, Singapore. https://doi.org/10.1007/978-981-13-8679-4_3
Download citation
DOI: https://doi.org/10.1007/978-981-13-8679-4_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-8678-7
Online ISBN: 978-981-13-8679-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)