Skip to main content

Graded Possibilistic Meta Clustering

  • Chapter
  • First Online:
Neural Approaches to Dynamics of Signal Exchanges

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 151))

  • 883 Accesses

Abstract

Meta clustering starts from different clusterings of the same data and aims to group them, reducing the complexity of the choice of the best partitioning and the number of alternatives to compare. Starting from a collection of single feature clusterings, a graded possibilistic medoid meta clustering algorithm is proposed in this paper, exploiting the soft transition from probabilistic to possibilistic memberships in a way that produces more compact and separated clusters with respect to other medoid-based algorithms. The performance of the algorithm has been evaluated on six publicly available data sets over three medoid-based competitors, yielding promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta clustering. In: Proceedings of the Sixth International Conference on Data Mining. ICDM ’06, IEEE Computer Society (2006) 107–118

    Google Scholar 

  2. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence 1(2), 224–227 (1979)

    Article  Google Scholar 

  3. Dharan, S., Nair, A.S.: Biclustering of gene expression data using reactive greedy randomized adaptive search procedure. BMC Bioinformatics 10(Suppl 1), S27 (2009). Jan

    Google Scholar 

  4. Dunn, J.: Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4(1), 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  5. Ferone, A., Galletti, A., Maratea, A.: Variable width rough-fuzzy c-means. In: 2017 13th International Conference on Signal-Image Technology Internet-Based Systems (SITIS). (Dec 2017) 458–464

    Google Scholar 

  6. Ferone, A., Maratea, A.: Decoy clustering through graded possibilistic c-medoids. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (July 2017) 1–6

    Google Scholar 

  7. Ferone, A., Petrosino, A.: Feature selection through composition of rough–fuzzy sets. In: International Workshop on Fuzzy Logic and Applications, Springer (2016) 116–125

    Google Scholar 

  8. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. Journal of the American Statistical Association 78(383), 553–569 (1983)

    Article  Google Scholar 

  9. Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means clustering algorithms. Pattern Recognition 22(2), 205–212 (1989)

    Article  MathSciNet  Google Scholar 

  10. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–218 (1985). Dec

    Article  Google Scholar 

  11. Kaufman, L., Rousseeuw, P.J.: Finding groups in data : an introduction to cluster analysis. Wiley series in probability and mathematical statistics. Wiley, New York (1990) A Wiley-Interscience publication

    Google Scholar 

  12. Kleinberg, J.M.: An impossibility theorem for clustering. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15, pp. 446–453. MIT Press (2002). http://papers.nips.cc/paper/2340-an-impossibility-theorem-forclustering.pdf

  13. Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems 9(4), 595–607 (2001)

    Article  Google Scholar 

  14. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  15. Maji, P., Pal, S.K.: Rough set based generalized fuzzy-means algorithm and quantitative indices. Trans. Sys. Man Cyber. Part B 37(6), 1529–1540 (2007)

    Article  Google Scholar 

  16. Morey, L., Agresti, A.: The measurement of classification agreement: An adjustment to the rand statistic for chance agreement. ” 44 (03 1984) 33–37

    Article  Google Scholar 

  17. Peters, G., Lampart, M.: A partitive rough clustering algorithm. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) Rough Sets and Current Trends in Computing, pp. 657–666. Springer, Berlin Heidelberg, Berlin, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Pontes, B., Girldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: A review. Journal of Biomedical Informatics 57(Supplement C) (2015) 163 – 180

    Article  Google Scholar 

  19. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846–850 (1971)

    Article  Google Scholar 

  20. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Solla, S.A., Leen, T.K., Müller, K. (eds.) Advances in Neural Information Processing Systems 12, pp. 617–623. MIT Press (1999). http://papers.nips.cc/paper/1651-agglomerative-informationbottleneck.pdf

  21. Wagner, S., Wagner, D.: Comparing clusterings- an overview (2007)

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support for this research through “Bando di sostegno alla ricerca individuale per il triennio 2015–2017 – Annualità 2017” granted by University of Naples “Parthenope”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Ferone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferone, A., Maratea, A. (2020). Graded Possibilistic Meta Clustering. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_18

Download citation

Publish with us

Policies and ethics