Abstract
The traditional diagnosis of Parkinson’s disease (PD) aims to assess several clinical manifestations, and it is commonly based on medical observations. However, an overall evaluation is extremely difficult due to the large variety of symptoms that affect PD patients. Furthermore, the traditional PD assessment is based on visual subjective observation of different motor tasks. For this reasons, an automatic system could be able to automatically assess and rate the PD and objectively evaluate the performed motor tasks. Such system could then support medical specialists in the assessment and rating of PD patients in a real clinical scenario. In this work, we developed multi-modal tool suite able to extract and process meaningful features from different motor tasks by means of two main experimental set-ups. In detail, we acquired and evaluated the motor performance acquired during the finger tapping, the foot tapping and the hand writing exercises. Several sets of features have been extracted from the acquired signals and used to both successfully classify a subject as PD patient or healthy subject, and rate the disease among PD patients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Twelves, D., Perkins, K.S.M., Uk, M., Counsell, C.: Systematic review of incidence studies of Parkinson’s disease. Mov. Disord. 18(1), 19–31 (2003)
Goetz, G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G.T., Counsell, C., Giladi, N., Holloway, R., Moore, C.G., Wenning, G.K., Yahr, M.D., Seidl, L.: Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov. Disord. 19(9), 1020–1028 (2004)
Bortone, I., Buongiorno, D., Lelli, G., Di Candia, A., Cascarano, G.D., Trotta, G.F., Fiore, P., Bevilacqua, V.: Gait analysis and Parkinson’s disease: recent trends on main applications in healthcare. In: Masia, L., Micera, S., Akay, M., Pons, J.L. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation III, pp. 1121–1125. Springer, Cham (2019)
Djuric-Jovicic, M.D., Jovicic, N.S., Radovanovic, S.M., Stankovic, I.D., Popovic, M.B., Kostic, V.S.: Automatic identification and classification of freezing of gait episodes in Parkinson’s disease patients. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 685–694 (2014)
Tripoliti, E.E., Tzallas, A.T., Tsipouras, M.G., Rigas, G., Bougia, P., Leontiou, M., Konitsiotis, S., Chondrogiorgi, M., Tsouli, S., Fotiadis, D.I.: Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput. Methods Prog. Biomed. 110(1), 12–26 (2013)
Bortone, I., Trotta, G.F., Brunetti, A., Cascarano, G.D., Loconsole, C., Agnello, N., Argentiero, A., Nicolardi, G., Frisoli, A., Bevilacqua, V.: A novel approach in combination of 3D gait analysis data for aiding clinical decision-making in patients with Parkinson’s disease. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10362, pp. 504–514. LNCS (2017)
Tsanas, A., Little, M., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of parkinsons disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57(4), 884–893 (2010)
Mellone, S., Palmerini, L., Cappello, A., Chiari, L.: Hilbert-huang-based tremor removal to assess postural properties from accelerometers. IEEE Trans. Biomed. Eng. 58(6), 1752–1761 (2011)
Heldman, D.A., Espay, A.J., LeWitt, P.A., Giuffrida, J.P.: Clinician versus machine: reliability and responsiveness of motor endpoints in Parkinson’s disease. Parkinson. Relat. Dis. 20(6), 590–595 (2014)
Rigas, G., Tzallas, A.T., Tsipouras, M.G., Bougia, P., Tripoliti, E.E., Baga, D., Fotiadis, D.I., Tsouli, S.G., Konitsiotis, S.: Assessment of tremor activity in the parkinsons disease using a set of wearable sensors. IEEE Trans. Biomed. Eng. 16(3), 478–487 (2012)
Bevilacqua, V., Trotta, G.F., Loconsole, C., Brunetti, A., Caporusso, N., Bellantuono, G.M., De Feudis, I., Patruno, D., De Marco, D., Venneri, A., Di Vietro, M.G., Losavio, G., Tatò, S.I.: A RGB-D sensor based tool for assessment and rating of movement disorders 590, (2018)
Buongiorno, D., Trotta, G.F., Bortone, I., Di Gioia, N., Avitto, F., Losavio, G., Bevilacqua, V.: Assessment and rating of movement impairment in Parkinson’s disease using a low-cost vision-based system. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.) Intelligent Computing Methodologies, pp. 777–788. Springer, Cham (2018)
Salarian, A., Russmann, H., Wider, C., Burkhard, P.R., Vingerhoets, F.G., Aminian, K.: Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans. Biomed. Eng. 54(2), 313–322 (2007)
Houde, D., Haijun, L., Lueth, T.C.: Quantitative assessment of Parkinsonian bradykinesia based on an inertial measurement unit. BioMed. Eng. Online 14(1) (2015)
Griffiths, R.I., Kotschet, K., Arfon, S., Xu, Z.M., Johnson, W., Drago, J., Evans, A., Kempster, P., Raghav, S., Horne, M.K.: Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J. Parkinson’s Dis. 2(1), 47–55 (2012)
Keijsers, N.L.W., Horstink, M.W.I.M., Gielen, S.C.A.M.: Automatic assessment of levodopa-induced dyskinesias in daily life by neural networks. Mov. Disord. 18(1), 70–80 (2003)
Lopane, G., Mellone, S., Chiari, L., Cortelli, P., Calandra-Buonaura, G., Contin, M.: Dyskinesia detection and monitoring by a single sensor in patients with Parkinson’s disease. Mov. Disord.: Off. J. Mov. Disord. Soc. 30(9), 1267–1271 (2015)
Saunders-Pullman, R., Derby, C., Stanley, K., Floyd, A., Bressman, S., Lipton, R.B., Deligtisch, A., Severt, L., Yu, Q., Kurtis, M., Pullman, S.L.: Validity of spiral analysis in early Parkinson’s disease. Mov. Disord. 23(4), 531–537 (2008)
Westin, J., Ghiamati, S., Memedi, M., Nyholm, D., Johansson, A., Dougherty, M., Groth, T.: A new computer method for assessing drawing impairment in Parkinson’s disease. J. Neurosci. Methods 190(1), 143–148 (2010)
Liu, X., Carroll, C.B., Wang, S.Y., Zajicek, J., Bain, P.G.: Quantifying drug-induced dyskinesias in the arms using digitised spiral-drawing tasks. J. Neurosci. Methods 144(1), 47–52 (2005)
Loconsole, C., Trotta, G.F., Brunetti, A., Trotta, J., Schiavone, A., Tatò, S.I., Losavio, G., Bevilacqua, V.: Computer vision and EMG-based handwriting analysis for classification in parkinson’s disease, vol. 10362. LNCS (2017)
Carmeli, E., Patish, H., Coleman, R.: The aging hand. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 58(2), M146–M152 (2003)
Loconsole, C., Cascarano, G.D., Lattarulo, A., Brunetti, A., Trotta, G.E., Buongiorno, D., Bortone, I., De Feudis, I., Losavio, G., Bevilacqua, V., Di Sciascio, E.: A comparison between ANN and SVM classifiers for Parkinson’s disease by using a model-free computer-assisted handwriting analysis based on biometric signals. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2018
Van Gemmert, A.W.A., Teulings, H.-L., Contreras-Vidal, J.L., Stelmach, G.E.: Parkinsons disease and the control of size and speed in handwriting. Neuropsychologia 37(6), 685–694 (1999)
Drotar, P., Mekyska, J., Smekal, Z., Rektorova, I., Masarova, L., Faundez-Zanuy, M.: Prediction potential of different handwriting tasks for diagnosis of Parkinson’s. In: E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2013)
Bevilacqua, V., Salatino, A.A., Di Leo, C., Tattoli, G., Buongiorno, D., Signorile, D., Babiloni, C., Del Percio, C., Triggiani, A.I., Gesualdo, L.: Advanced classification of Alzheimer’s disease and healthy subjects based on EEG markers. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2015-Sept (2015)
Buongiorno, D., Barsotti, M., Sotgiu, E., Loconsole, C., Solazzi, M., Bevilacqua, V., Frisoli, A.: A neuromusculoskeletal model of the human upper limb for a myoelectric exoskeleton control using a reduced number of muscles. In: 2015 IEEE World Haptics Conference (WHC), pp. 273–279 (2015)
Bevilacqua, V., Mastronardi, G., Piscopo, G.: Evolutionary approach to inverse planning in coplanar radiotherapy. Image Vis. Comput. 25(2), 196–203 (2007)
Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Paradiso, A., Tommasi, S.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinf. 10(12), S4 (2009)
Menolascina, F., Tommasi, S., Paradiso, A., Cortellino, M., Bevilacqua, V., Mastronardi, G.: Novel data mining techniques in aCGH based breast cancer subtypes profiling: The biological perspective. In: 2007 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, CIBCB 2007, pp. 9–16 (2007)
Bevilacqua, V., Tattoli, G., Buongiorno, D., Loconsole, C., Leonardis, D., Barsotti, M., Frisoli, A., Bergamasco, M.: A novel BCI-SSVEP based approach for control of walking in virtual environment using a convolutional neural network. In: Proceedings of the International Joint Conference on Neural Networks (2014)
Manghisi, V.M., Uva, A.E., Fiorentino, M., Bevilacqua, V., Trotta, G.F., Monno, G.: Real time RULA assessment using Kinect v2 sensor. Appl. Ergon. 65, 481–491 (2017)
Bevilacqua, V., Cariello, L., Columbo, D., Daleno, D., Fabiano, M.D., Giannini, M., Mastronardi, G., Castellano, M.: Retinal fundus biometric analysis for personal identifications. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5227 LNAI, pp. 1229–1237 (2008)
Bevilacqua, V., Buongiorno, D., Carlucci, P., Giglio, E., Tattoli, G., Guarini, A., Sgherza, N., De Tullio, G., Minoia, C., Scattone, A., Simone, G., Girardi, F., Zito, A., Gesualdo, L.: A supervised CAD to support telemedicine in hematology. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, July 2015
Buongiorno, D., Barone, F., Solazzi, M., Bevilacqua, V., Frisoli, A.: A linear optimization procedure for an EMG-driven neuromusculoskeletal model parameters adjusting: Validation through a myoelectric exoskeleton control. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) Haptics: Perception, Devices, Control, and Applications, pp. 218–227. Springer, Cham (2016)
Buongiorno, D., Barone, F., Berger, D.J., Cesqui, B., Bevilacqua, V., d’Avella, A., Frisoli, A.: Evaluation of a pose-shared synergy-based isometric model for hand force estimation: Towards myocontrol. In: Converging Clinical and Engineering Research on Neurorehabilitation II (pp. 953–958). Springer, Cham (2017)
Bevilacqua, V., Tattoli, G., Buongiorno, D., Loconsole, C., Leonardis, D., Barsotti, M., Frisoli, A., Bergamasco, M.: A novel BCI-SSVEP based approach for control of walking in virtual environment using a convolutional neural network. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4121–4128, July 2014
Buongiorno, D., Barsotti, M., Barone, F., Bevilacqua, V.: Frisoli, Antonio: A linear approach to optimize an emg-driven neuromusculoskeletal model for movement intention detection in myo-control: a case study on shoulder and elbow joints. Front. Neurorobot. 12, 74 (2018)
Kanjilal, P.P., Palit, S., Saha, G.: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Tran. Biomed. Eng. 44(1), 51–59 (1997)
Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion—GECCO ’16 Companion, pp. 1385–1392. ACM, ACM Press, New York, New York, USA (2016)
Acknowledgements
This work has been supported by the Italian project RoboVir (within the BRIC INAIL-2017 programme).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Cascarano, G.D. et al. (2020). A Multi-modal Tool Suite for Parkinson’s Disease Evaluation and Grading. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_24
Download citation
DOI: https://doi.org/10.1007/978-981-13-8950-4_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-8949-8
Online ISBN: 978-981-13-8950-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)