Abstract
Segmentation of brain tumor is a very crucial task from the medical points of view, such as in surgery and treatment planning. The tumor can be noticeable at any region of the brain with various size and shape due to its nature, that makes the segmentation task more difficult. In this present work, we propose a patch-based automated segmentation of brain tumor using a deep convolutional neural network with small convolutional kernels and leaky rectifier linear units (LReLU) as an activation function. Present work efficiently segments multi-modalities magnetic resonance (MR) brain images into normal and tumor tissues. The presence of small convolutional kernels allow more layers to form a deeper architecture and less number of the kernel weights in each layer during training. Leaky rectifier linear unit (LReLU) solves the problem of rectifier linear unit (ReLU) and increases the speed of the training process. The present work can deal with both high- and low-grade tumor regions on MR images. BraTS 2015 dataset has been used in the present work as a standard benchmark dataset. The presented network takes T1, T2, T1c, and FLAIR MR images from each subject as inputs and produces the segmented labels as outputs. It is experimentally observed that the present work has obtained promising results than the existing algorithms depending on the ground truth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)
Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)
Bal, A., Banerjee, M., Sharma, P., Maitra, M.: Brain tumor segmentation on MR image using k-means and fuzzy-possibilistic clustering. In: 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), pp. 1–8. IEEE, New York (2018)
Bal, A., Banerjee, M., Chakrabarti, A., Sharma, P.: MRI brain tumor segmentation and analysis using rough-fuzzy c-means and shape based properties. J. King Saud Univ.-Comput. Inf. Sci. (2018)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Lyksborg, M., Puonti, O., Agn, M., Larsen, R.: An ensemble of 2D convolutional neural networks for tumor segmentation. In: Scandinavian Conference on Image Analysis, pp. 201–211. Springer, Berlin (2015)
Kleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., Hamprecht, F.: Ilastik for multi-modal brain tumor segmentation. In: Proceedings MICCAI BraTS (Brain Tumor Segmentation Challenge), pp. 12–17 (2014)
Dvořák, P., Menze, B.: Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation. In: International MICCAI Workshop on Medical Computer Vision, pp. 59–71. Springer, Berlin (2015)
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)
Rajendran, A., Dhanasekaran, R.: Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: a combined approach. Proc. Eng. 30, 327–333 (2012)
Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)
Havaei, M., Larochelle, H., Poulin, P., Jodoin, P.-M.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg. 11(5), 777–788 (2016)
Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)
Selvakumar, J., Lakshmi, A., Arivoli, T.: Brain tumor segmentation and its area calculation in brain MR images using k-mean clustering and fuzzy c-mean algorithm. In: 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 186–190. IEEE, New York (2012)
Rajendran, A., Dhanasekaran, R.: Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model. Int. J. Comput. Commun. Control 7(3), 530–539 (2014)
Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)
Hussain, S., Anwar, S.M., Majid, M.: Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1998–2001. IEEE, New York (2017)
Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), pp. 56–59 (2015)
Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. Med. Image Comput. Comput.-Assist. Interv.-MICCAI 2008, 67–75 (2008)
Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)
Kaus, M.R., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated segmentation of MR images of brain tumors. Radiology 218(2), 586–591 (2001)
Li, C., Gore, J.C., Davatzikos, C.: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32(7), 913–923 (2014)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30, p. 3 (2013)
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012)
Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.: Understanding data augmentation for classification: when to warp? In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6. IEEE, New York (2016)
Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data augmentation for image classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3688–3692. IEEE, New York (2016)
Wang, J., Perez, L.: The effectiveness of data augmentation in image classification using deep learning. Technical report (2017)
Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation Challenge. Proceedings, Winning Contribution, pp. 31–35 (2014)
Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11) (2013)
Acknowledgements
This work is supported by the Board of Research in Nuclear Sciences (BRNS), DAE, Government of India under the Reference No. 34/14/13/2016-BRNS/34044.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Bal, A., Banerjee, M., Sharma, P., Chaki, R. (2020). A Multi-class Image Classifier for Assisting in Tumor Detection of Brain Using Deep Convolutional Neural Network. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 996. Springer, Singapore. https://doi.org/10.1007/978-981-13-8969-6_6
Download citation
DOI: https://doi.org/10.1007/978-981-13-8969-6_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-8968-9
Online ISBN: 978-981-13-8969-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)