Skip to main content

Virtual Environment for Remote Control of UGVs Using a Haptic Device

  • Conference paper
  • First Online:
Developments and Advances in Defense and Security

Abstract

This paper presents a virtual reality environment designed for military training personnel, focused on the remote control of unmanned land vehicles. The environment design has been made in the V-REP software, where a prototype of an explorer robot based on the kinematic model of a unicycle is presented. This vehicle is attached with proximity sensors to detect obstacles and thus be able to avoid them. Instead of operating with a conventional joystick that only allows the use of push buttons, a haptic device with force feedback is used with which the user experiences a more realistic immersive situation. In this context, the person can manipulate the unmanned vehicle direction and perceive when there is a collision with a nearby object as if it were on the site. To link the input device (Novint Falcon) with the virtual interface, the device mathematical modelling is carried out, and through MATLAB, the respective processing and the implementation of the proportional–integral–derivative (PID) control algorithm for the displacement are made. The after-scenario questionnaire (ASQ) test is used, and a general average of 1.78/7 is obtained. Being a value close to 1, it shows the acceptance that the system has for the users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosey, S., Guerrero, M., Greenman, A.J.: Technology entrepreneurship research opportunities: insights from across Europe. J. Technol. Transfer 42(1), 1–9 (2017)

    Article  Google Scholar 

  2. McCarthy, J., Wright, P.: The Enchantments of Technology. Human–Computer Interaction Series, pp. 359–373. Springer (2018)

    Google Scholar 

  3. Zieliński, C., Winiarski, T., Kornuta, T.: Agent-based structures of robot systems. In: The 19th Polish Control Conference, KKA 2017, pp. 493–502. Springer (2017)

    Google Scholar 

  4. Kunze, L., Hawes, N., Duckett, T., Hanheide, M., Krajník, T.: Artificial intelligence for long-term robot autonomy: a survey. IEEE Rob. Autom. Lett. 3(4), 4023–4030 (2018)

    Article  Google Scholar 

  5. Choi, S.Y.: Agent-based human-robot interaction simulation model for the analysis of operator performance in the supervisory control of UGVs. Int. J. Precis. Eng. Manuf. 19(5), 685–693 (2018)

    Article  Google Scholar 

  6. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: On-board visual SLAM on a UGV using a RGB-D camera. In: 10th International Conference on Intelligent Robotics and Applications, ICIRA 2017, pp. 298–308. Springer (2017)

    Google Scholar 

  7. Arbanas, B., et al.: Decentralized planning and control for UAV–UGV cooperative teams. Auton. Rob. 42(8), 1601–1618 (2018)

    Article  Google Scholar 

  8. Wang, H.: Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 62(2), 948–954 (2017)

    Article  MathSciNet  Google Scholar 

  9. Stevens, J.A., Kincaid, J.P.: The relationship between presence and performance in virtual simulation training. Open J. Model. Simul. 3(2), 41–48 (2015)

    Article  Google Scholar 

  10. Smith, M.J., et al.: Virtual reality job interview training for veterans with posttraumatic stress disorder. J. Vocat. Rehabil. 42(3), 271–279 (2015)

    Article  Google Scholar 

  11. Siu, K.C., Best, B.J., Kim, J.W., Oleynikov, D., Ritter, F.E.: Adaptive virtual reality training to optimize military medical skills acquisition and retention. Mil. Med. 181(5), 214–220 (2016)

    Article  Google Scholar 

  12. Ibari, B., Ahmed-Foitih, Z., Reda, H.E.A.: Remote control of mobile robot using the virtual reality. Int. J. Electr. Comput. Eng. 5(5) (2015)

    Google Scholar 

  13. Tikanmäki, A., Bedrník, T., Raveendran, R., Röning, J.: The remote operation and environment reconstruction of outdoor mobile robots using virtual reality. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1526–1531 (2017)

    Google Scholar 

  14. Lwowski, J., Joordens, M., Majumdar, A., Benavidez, P., Prevost, J.J., Jamshidi, M.: The utilization of virtual reality as a system of systems research tool. In: 2018 IEEE 13th Annual Conference on System of Systems Engineering (SoSE), pp. 535–540 (2018)

    Google Scholar 

  15. Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum. Comput. Interact. 7(1), 57–78 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

To the authorities of Universidad Técnica de Ambato (UTA), Dirección de Investigación y Desarrollo (DIDE), Instituto Tecnológico Superior Guayaquil—Ambato and CELEC EP., for supporting this work and future research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Buele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roberto Segura, F. et al. (2020). Virtual Environment for Remote Control of UGVs Using a Haptic Device. In: Rocha, Á., Pereira, R. (eds) Developments and Advances in Defense and Security. Smart Innovation, Systems and Technologies, vol 152. Springer, Singapore. https://doi.org/10.1007/978-981-13-9155-2_41

Download citation

Publish with us

Policies and ethics