Skip to main content

Gray Level Face Recognition Using Spatial Features

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Abstract

Face recognition has always been an active research area with several applications, such as security access control, human-machine interface and gender classification. More often, in real world, grayscale images have been used: video surveillance, for instance. Further, difficulties in face recognition could be due to face poses, orientation, lighting, aging etc. Faces, either in color or grayscale and are having any difficulties (as mentioned earlier) can be learned through edge map and texture, where spatial properties could be learned. Inspired from the fact that face can be considered as line-rich pattern/object, we propose novel face recognition framework that helps learn/recognize via spatial arrangements of edges (and textures as complement). To exploit edge map, we use shape context (SC) and pyramid histogram of orientated gradient (PHOG), and similarly GIST as texture features. Experimental tests (on four different publicly available datasets, such as Caltech, ColorFERET, IndianFaces and ORL) conforms that spatial features are crucial in face representation and recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Hakim, A.E., Farag, A.A.: CSIFT: a SIFT descriptor with color invariant characteristics. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1978–1983. IEEE (2006)

    Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  3. Aly, M.: Face recognition using sift features. CNS/Bi/EE report 186 (2006)

    Google Scholar 

  4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  5. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: Advances in Neural Information Processing Systems, pp. 831–837 (2001)

    Google Scholar 

  6. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM (2007)

    Google Scholar 

  7. Bouguelia, M., Nowaczyk, S., Santosh, K.C., Verikas, A.: Agreeing to disagree: active learning with noisy labels without crowdsourcing. Int. J. Mach. Learn. Cybern. 9(8), 1307–1319 (2018)

    Article  Google Scholar 

  8. Candemir, S., Borovikov, E., Santosh, K., Antani, S., Thoma, G.: RSILC: rotation-and scale-invariant, line-based color-aware descriptor. Image Vis. Comput. 42, 1–12 (2015)

    Article  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  10. Deboeverie, F., Veelaert, P., Philips, W.: Face analysis using curve edge maps. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6979, pp. 109–118. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24088-1_12

    Chapter  Google Scholar 

  11. Do, T.T., Kijak, E.: Face recognition using co-occurrence histograms of oriented gradients. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1301–1304. IEEE (2012)

    Google Scholar 

  12. Dreuw, P., Steingrube, P., Hanselmann, H., Ney, H., Aachen, G.: SURF-face: face recognition under viewpoint consistency constraints. In: BMVC, pp. 1–11 (2009)

    Google Scholar 

  13. Du, G., Su, F., Cai, A.: Face recognition using SURF features. Proc. SPIE 7496, 749628-1 (2009)

    Google Scholar 

  14. Gao, Y., Leung, M.K.: Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 764–779 (2002)

    Article  Google Scholar 

  15. Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: Tenth IEEE International Conference on Computer Vision 2005, ICCV 2005, vol. 2, pp. 1458–1465. IEEE (2005)

    Google Scholar 

  16. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  17. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_3

    Chapter  Google Scholar 

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  19. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  20. Santosh, K.C., Lamiroy, B., Wendling, L.: Integrating vocabulary clustering with spatial relations for symbol recognition. Int. J. Doc. Anal. Recogn. 17(1), 61–78 (2014)

    Article  Google Scholar 

  21. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1991, CVPR 1991, pp. 586–591. IEEE (1991)

    Google Scholar 

  22. Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

  23. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components for face recognition. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition 1998, pp. 336–341. IEEE (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Santosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fawwad Hussain, M., Wang, H., Santosh, K.C. (2019). Gray Level Face Recognition Using Spatial Features. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9181-1_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9180-4

  • Online ISBN: 978-981-13-9181-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics