Abstract
Face recognition has always been an active research area with several applications, such as security access control, human-machine interface and gender classification. More often, in real world, grayscale images have been used: video surveillance, for instance. Further, difficulties in face recognition could be due to face poses, orientation, lighting, aging etc. Faces, either in color or grayscale and are having any difficulties (as mentioned earlier) can be learned through edge map and texture, where spatial properties could be learned. Inspired from the fact that face can be considered as line-rich pattern/object, we propose novel face recognition framework that helps learn/recognize via spatial arrangements of edges (and textures as complement). To exploit edge map, we use shape context (SC) and pyramid histogram of orientated gradient (PHOG), and similarly GIST as texture features. Experimental tests (on four different publicly available datasets, such as Caltech, ColorFERET, IndianFaces and ORL) conforms that spatial features are crucial in face representation and recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Hakim, A.E., Farag, A.A.: CSIFT: a SIFT descriptor with color invariant characteristics. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1978–1983. IEEE (2006)
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)
Aly, M.: Face recognition using sift features. CNS/Bi/EE report 186 (2006)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: Advances in Neural Information Processing Systems, pp. 831–837 (2001)
Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM (2007)
Bouguelia, M., Nowaczyk, S., Santosh, K.C., Verikas, A.: Agreeing to disagree: active learning with noisy labels without crowdsourcing. Int. J. Mach. Learn. Cybern. 9(8), 1307–1319 (2018)
Candemir, S., Borovikov, E., Santosh, K., Antani, S., Thoma, G.: RSILC: rotation-and scale-invariant, line-based color-aware descriptor. Image Vis. Comput. 42, 1–12 (2015)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
Deboeverie, F., Veelaert, P., Philips, W.: Face analysis using curve edge maps. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6979, pp. 109–118. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24088-1_12
Do, T.T., Kijak, E.: Face recognition using co-occurrence histograms of oriented gradients. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1301–1304. IEEE (2012)
Dreuw, P., Steingrube, P., Hanselmann, H., Ney, H., Aachen, G.: SURF-face: face recognition under viewpoint consistency constraints. In: BMVC, pp. 1–11 (2009)
Du, G., Su, F., Cai, A.: Face recognition using SURF features. Proc. SPIE 7496, 749628-1 (2009)
Gao, Y., Leung, M.K.: Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 764–779 (2002)
Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: Tenth IEEE International Conference on Computer Vision 2005, ICCV 2005, vol. 2, pp. 1458–1465. IEEE (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)
Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_3
Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 2, pp. 1150–1157. IEEE (1999)
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)
Santosh, K.C., Lamiroy, B., Wendling, L.: Integrating vocabulary clustering with spatial relations for symbol recognition. Int. J. Doc. Anal. Recogn. 17(1), 61–78 (2014)
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1991, CVPR 1991, pp. 586–591. IEEE (1991)
Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)
Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components for face recognition. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition 1998, pp. 336–341. IEEE (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Fawwad Hussain, M., Wang, H., Santosh, K.C. (2019). Gray Level Face Recognition Using Spatial Features. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_20
Download citation
DOI: https://doi.org/10.1007/978-981-13-9181-1_20
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9180-4
Online ISBN: 978-981-13-9181-1
eBook Packages: Computer ScienceComputer Science (R0)