Abstract
High spectral resolution of hyperspectral images comes hand in hand with high data redundancy (i.e. multiple bands carrying similar information), which further contributes to high computational costs, complexity and data storage. Hence, in this work, we aim at performing dimensionality reduction by selection of non-redundant bands from hyperspectral image of Indian Pines using spectral clustering. We represent the dataset in the form of similarity graphs computed from metrics such as Euclidean, and Tanimoto Similarity using K-Nearest neighbor method. The optimum k for our dataset is identified using methods like Distribution Compactness (DC) algorithm, elbow plot, histogram and visual inspection of the similarity graphs. These methods give us a range for the optimum value of k. The exact value of clusters k is estimated using Silhouette, Calinski-Harbasz, Dunn’s and Davies-Bouldin Index. The value indicated by majority of indices is chosen as value of k. Finally, we have selected the bands closest to the centroids of the clusters, computed by using K-means algorithm. Tanimoto similarity suggests 17 bands out of 220 bands, whereas the Euclidean metric suggests 15 bands for the same. The accuracy of classified image before band selection using support vector machine (SVM) classifier is 76.94% and after band selection is 75.21% & 75.56% for Tanimoto and Euclidean matrices respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dutra, L.V., Mascarenhas, N.D.: Some experiments with spatial feature extraction methods in multispectral classification. Int. J. Remote Sens. 5(2), 303–313 (1984)
Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2(2), 139–172 (1987)
Gan, S., Cosgrove, D.A., Gardiner, E.J., Gillet, V.J.: Investigation of the use of spectral clustering for the analysis of molecular data. J. Chem. Inf. Model. 54(12), 3302–3319 (2014)
Weller-Fahy, D.J., Borghetti, B.J., Sodemann, A.A.: A survey of distance and similarity measures used within network intrusion anomaly detection. IEEE Commun. Surv. Tutor. 17(1), 70–91 (2015)
Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Model. Methods Appl. Sci. 1, 300–307 (2007)
von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proceedings of Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 975–982. IEEE (1999)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised Learning. MIT Press, Cambridge (2006)
Naeini, A.A., Saadatseresht, M., Homayouni, S.: Automatic estimation of number of clusters in hyperspectral imagery. Photogram. Eng. Remote Sens. 80(7), 619–626 (2014)
Liang, J., Zhao, X., Li, D., Cao, F., Dang, C.: Determining the number of clusters using information entropy for mixed data. Pattern Recognit. 45(6), 2251–2265 (2012)
Huband, J.M., Bezdek, J.C., Hathaway, R.J.: bigVAT: visual assessment of cluster tendency for large data sets. Pattern Recognit. 38(11), 1875–1886 (2005)
Iam-on, N., Garrett, S.: LinkCluE: a MATLAB package for link-based cluster ensembles. J. Stat. Softw. 36(9), 1–36 (2010)
Sun, W., Zhang, L., Du, B., Li, W., Lai, Y.M.: Band selection using improved sparse subspace clustering for hyperspectral imagery classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2784–2797 (2015)
Kassambara, A.: Practical guide to cluster analysis in R: unsupervised machine learning. STHDA (2017)
Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. - Theory Methods 3(1), 1–27 (1974)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)
Navarro, J.F., Frenk, C.S., White, S.D.M.: A universal density profile from hierarchical clustering. Astrophys. J. 490(2), 493–508 (1996)
Gan, G., Ma, C., Wu, J.: Fuzzy clustering algorithms. In: Data Clustering: Theory, Algorithms, and Applications, pp. 151–159. Society for Industrial and Applied Mathematics (2007)
Baumgardner, M.F., Biehl, L.L., Landgrebe, D.A.: 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3 (2015)
Xing, E.P., Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. Adv. Neural Inf. Process. Syst. 15(15), 505–512 (2003)
Chung, F.R.K.: Spectral graph theory. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society (1997)
Rosenberger, C., Brun, L.: Similarity-based matching for face authentication. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)
Mohar, B.: Some applications of Laplace eigenvalues of graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry, pp. 225–275. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-015-8937-6_6
Perona, P., Freeman, W.: A factorization approach to grouping. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055696
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. 14, 849–856 (2001)
Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996)
Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42(5), 487–517 (2010)
Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Gupta, V., Gupta, S.K., Shukla, D.P. (2019). Optimal Selection of Bands for Hyperspectral Images Using Spectral Clustering. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_26
Download citation
DOI: https://doi.org/10.1007/978-981-13-9181-1_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9180-4
Online ISBN: 978-981-13-9181-1
eBook Packages: Computer ScienceComputer Science (R0)