Skip to main content

Optimal Selection of Bands for Hyperspectral Images Using Spectral Clustering

  • Conference paper
  • First Online:
  • 742 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1035))

Abstract

High spectral resolution of hyperspectral images comes hand in hand with high data redundancy (i.e. multiple bands carrying similar information), which further contributes to high computational costs, complexity and data storage. Hence, in this work, we aim at performing dimensionality reduction by selection of non-redundant bands from hyperspectral image of Indian Pines using spectral clustering. We represent the dataset in the form of similarity graphs computed from metrics such as Euclidean, and Tanimoto Similarity using K-Nearest neighbor method. The optimum k for our dataset is identified using methods like Distribution Compactness (DC) algorithm, elbow plot, histogram and visual inspection of the similarity graphs. These methods give us a range for the optimum value of k. The exact value of clusters k is estimated using Silhouette, Calinski-Harbasz, Dunn’s and Davies-Bouldin Index. The value indicated by majority of indices is chosen as value of k. Finally, we have selected the bands closest to the centroids of the clusters, computed by using K-means algorithm. Tanimoto similarity suggests 17 bands out of 220 bands, whereas the Euclidean metric suggests 15 bands for the same. The accuracy of classified image before band selection using support vector machine (SVM) classifier is 76.94% and after band selection is 75.21% & 75.56% for Tanimoto and Euclidean matrices respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dutra, L.V., Mascarenhas, N.D.: Some experiments with spatial feature extraction methods in multispectral classification. Int. J. Remote Sens. 5(2), 303–313 (1984)

    Article  Google Scholar 

  2. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2(2), 139–172 (1987)

    Google Scholar 

  3. Gan, S., Cosgrove, D.A., Gardiner, E.J., Gillet, V.J.: Investigation of the use of spectral clustering for the analysis of molecular data. J. Chem. Inf. Model. 54(12), 3302–3319 (2014)

    Article  Google Scholar 

  4. Weller-Fahy, D.J., Borghetti, B.J., Sodemann, A.A.: A survey of distance and similarity measures used within network intrusion anomaly detection. IEEE Commun. Surv. Tutor. 17(1), 70–91 (2015)

    Article  Google Scholar 

  5. Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Model. Methods Appl. Sci. 1, 300–307 (2007)

    Google Scholar 

  6. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  7. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proceedings of Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 975–982. IEEE (1999)

    Google Scholar 

  8. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  9. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised Learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  10. Naeini, A.A., Saadatseresht, M., Homayouni, S.: Automatic estimation of number of clusters in hyperspectral imagery. Photogram. Eng. Remote Sens. 80(7), 619–626 (2014)

    Article  Google Scholar 

  11. Liang, J., Zhao, X., Li, D., Cao, F., Dang, C.: Determining the number of clusters using information entropy for mixed data. Pattern Recognit. 45(6), 2251–2265 (2012)

    Article  Google Scholar 

  12. Huband, J.M., Bezdek, J.C., Hathaway, R.J.: bigVAT: visual assessment of cluster tendency for large data sets. Pattern Recognit. 38(11), 1875–1886 (2005)

    Article  Google Scholar 

  13. Iam-on, N., Garrett, S.: LinkCluE: a MATLAB package for link-based cluster ensembles. J. Stat. Softw. 36(9), 1–36 (2010)

    Article  Google Scholar 

  14. Sun, W., Zhang, L., Du, B., Li, W., Lai, Y.M.: Band selection using improved sparse subspace clustering for hyperspectral imagery classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2784–2797 (2015)

    Article  Google Scholar 

  15. Kassambara, A.: Practical guide to cluster analysis in R: unsupervised machine learning. STHDA (2017)

    Google Scholar 

  16. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. - Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  17. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  18. Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)

    Article  Google Scholar 

  19. Navarro, J.F., Frenk, C.S., White, S.D.M.: A universal density profile from hierarchical clustering. Astrophys. J. 490(2), 493–508 (1996)

    Article  Google Scholar 

  20. Gan, G., Ma, C., Wu, J.: Fuzzy clustering algorithms. In: Data Clustering: Theory, Algorithms, and Applications, pp. 151–159. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  21. Baumgardner, M.F., Biehl, L.L., Landgrebe, D.A.: 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3 (2015)

    Google Scholar 

  22. Xing, E.P., Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. Adv. Neural Inf. Process. Syst. 15(15), 505–512 (2003)

    Google Scholar 

  23. Chung, F.R.K.: Spectral graph theory. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society (1997)

    Google Scholar 

  24. Rosenberger, C., Brun, L.: Similarity-based matching for face authentication. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  25. Mohar, B.: Some applications of Laplace eigenvalues of graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry, pp. 225–275. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-015-8937-6_6

    Chapter  Google Scholar 

  26. Perona, P., Freeman, W.: A factorization approach to grouping. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055696

    Chapter  Google Scholar 

  27. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  28. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. 14, 849–856 (2001)

    Google Scholar 

  29. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  30. Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42(5), 487–517 (2010)

    Article  Google Scholar 

  31. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dericks P. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, V., Gupta, S.K., Shukla, D.P. (2019). Optimal Selection of Bands for Hyperspectral Images Using Spectral Clustering. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9181-1_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9180-4

  • Online ISBN: 978-981-13-9181-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics