Abstract
Extreme Learning Machine (ELM) is most popular emerging learning algorithm that modify classical ‘Generalized’ single hidden layer feed forward network. Though some traditional gradient based learning algorithm like variant Levenberg-Marguardt (LM) and Back propagation (BP) are widely utilized for training in multi layer FFNN but some drawbacks of this mechanism are the most prime issue to promote ELM. It imparts efficient learning solutions for different practices of classification and regression under supervise learning. ELM sharply deals with the messes arise from the gradient based learning algorithm like stopping criteria, learning rate, learning epoch, local minimum etc. But due to some fallibility the different concepts of variants of ELM are presented. This paper clarifies about Extreme Learning Machine along with different types of variants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE, July 2004
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)
Rong, H.J., Ong, Y.S., Tan, A.H., Zhu, Z.: A fast pruned-extreme learning machine for classification problem. Neurocomputing 72(1–3), 359–366 (2008)
Huang, G.B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3), 155–163 (2010)
Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)
Zhao, J., Wang, Z., Cao, F.: Extreme learning machine with errors in variables. World Wide Web 17(5), 1205–1216 (2014)
Zhou, Z.H., Zhao, J.W., Cao, F.L.: Surface reconstruction based on extreme learning machine. Neural Comput. Appl. 23(2), 283–292 (2013)
Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)
Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18), 3460–3468 (2008)
Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70(16–18), 3056–3062 (2007)
Feng, G., Huang, G.B., Lin, Q., Gay, R.K.L.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1357 (2009)
Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)
Lan, Y., Soh, Y.C., Huang, G.B.: Two-stage extreme learning machine for regression. Neurocomputing 73(16–18), 3028–3038 (2010)
Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66–77 (2012)
Shukla, S., Wadhvani, R., Bharti, J., Gyanchandani, M.: Voting based extreme learning machine with search based ensemble pruning. IJCSNS 17(3), 223 (2017)
Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)
Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine. Neurocomputing 72(13–15), 3391–3395 (2009)
Zhao, J., Wang, Z., Park, D.S.: Online sequential extreme learning machine with forgetting mechanism. Neurocomputing 87, 79–89 (2012)
Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)
Cao, J., Lin, Z., Huang, G.B.: Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36(3), 285–305 (2012)
Li, M.B., Huang, G.B., Saratchandran, P., Sundararajan, N.: Fully complex extreme learning machine. Neurocomputing 68, 306–314 (2005)
Deng, W.Y., Zheng, Q.H., Lian, S., Chen, L., Wang, X.: Ordinal extreme learning machine. Neurocomputing 74(1–3), 447–456 (2010)
Liu, X., Li, P., Gao, C.: Symmetric extreme learning machine. Neural Comput. Appl. 22(3–4), 551–558 (2013)
Zhang, W.B., Ji, H.B.: Fuzzy extreme learning machine for classification. Electron. Lett. 49(7), 448–450 (2013)
Castano, A., Fernandez-Navarro, F., Hervás-Martínez, C.: PCA-ELM: a robust and pruned extreme learning machine approach based on principal component analysis. Neural Process. Lett. 37(3), 377–392 (2013)
He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallel extreme learning machine for regression based on MapReduce. Neurocomputing 102, 52–58 (2013)
Horata, P., Chiewchanwattana, S., Sunat, K.: Robust extreme learning machine. Neurocomputing 102, 31–44 (2013)
Yu, Q., Miche, Y., Eirola, E., Van Heeswijk, M., SéVerin, E., Lendasse, A.: Regularized extreme learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013)
Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101, 229–242 (2013)
Wang, B., Wang, G., Li, J., Wang, B.: Update strategy based on region classification using ELM for mobile object index. Soft Comput. 16(9), 1607–1615 (2012)
Zheng, W., Qian, Y., Lu, H.: Text categorization based on regularization extreme learning machine. Neural Comput. Appl. 22(3–4), 447–456 (2013)
Li, G., Niu, P.: An enhanced extreme learning machine based on ridge regression for regression. Neural Comput. Appl. 22(3–4), 803–810 (2013)
Balasundaram, S.: On extreme learning machine for E-insensitive regression in the primal by Newton method. Neural Comput. Appl. 22(3–4), 559–567 (2013)
Zong, W., Huang, G.B.: Face recognition based on extreme learning machine. Neurocomputing 74(16), 2541–2551 (2011)
Mohammed, A.A., Minhas, R., Wu, Q.J., Sid-Ahmed, M.A.: Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recogn. 44(10–11), 2588–2597 (2011)
Nian, R., He, B., Lendasse, A.: 3D object recognition based on a geometrical topology model and extreme learning machine. Neural Comput. Appl. 22(3–4), 427–433 (2013)
Yang, J., Jiao, Y., Xiong, N., Park, D.: Fast face gender recognition by using local ternary pattern and extreme learning machine. KSII Trans. Internet Inf. Syst. (TIIS) 7(7), 1705–1720 (2013)
Yang, J., Xie, S., Yoon, S., Park, D., Fang, Z., Yang, S.: Fingerprint matching based on extreme learning machine. Neural Comput. Appl. 22(3–4), 435–445 (2013)
Chen, F.L., Ou, T.Y.: Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry. Expert Syst. Appl. 38(3), 1336–1345 (2011)
Xu, Y., Dai, Y., Dong, Z.Y., Zhang, R., Meng, K.: Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comput. Appl. 22(3–4), 501–508 (2013)
Malathi, V., Marimuthu, N.S., Baskar, S., Ramar, K.: Application of extreme learning machine for series compensated transmission line protection. Eng. Appl. Artif. Intell. 24(5), 880–887 (2011)
Obaidullah, S.M., Halder, C., Santosh, K.C., Das, N., Roy, K.: PHDIndic\(\_\)11: page-level handwritten document image dataset of 11 official Indic scripts for script identification. Multimedia Tools Appl. 77(2), 1643–1678 (2018)
Mukherjee, H., Obaidullah, S.M., Santosh, K.C., Phadikar, S., Roy, K.: Line spectral frequency-based features and extreme learning machine for voice activity detection from audio signal. Int. J. Speech Technol. 21, 753–760 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ghosh, S., Mukherjee, H., Obaidullah, S.M., Santosh, K.C., Das, N., Roy, K. (2019). A Survey on Extreme Learning Machine and Evolution of Its Variants. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_50
Download citation
DOI: https://doi.org/10.1007/978-981-13-9181-1_50
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9180-4
Online ISBN: 978-981-13-9181-1
eBook Packages: Computer ScienceComputer Science (R0)