Skip to main content

Bit-Plane Specific Selective Histogram Equalization for Image Enhancement and Representation

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1035))

  • 718 Accesses

Abstract

Images acquired in poor acquisition conditions which are unavoidable and cannot be ignored in many visual applications require enhancement to achieve high contrast for better representation and interpretation of image objects. For efficient image storage and communications, compression and preserving of image details is required apart from contrast enhancement. A popular histogram equalization approach leaves undesirable artefacts in enhanced images and increases its data size due to excessive contrast enhancement. In this paper, we present a bit-plane specific selective histogram equalization technique which narrows the range of enhanced image than original image and keeps image details intact without unnoticeable artefacts with reduced image data size. The qualitative and quantitative measures as visual perception, histogram, edge details, entropy, data storage size, mean intensity and mean square error obtained for different images demonstrate the effectiveness of the selective bit-plane specific histogram equalization over to other methods of histogram equalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  2. Russ, J.C.: The Image Processing Handbook, 6th edn. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  3. Ting, C.-C., Wu, B.-F., Chung, M.-L., Chiu, C.-C., Wu, Y.-C.: Visual contrast enhancement algorithm based on histogram equalization. Sensors 15(7), 16981–16999 (2015)

    Article  Google Scholar 

  4. Yoon, H., Han, Y., Hahn, H.: Image contrast enhancement based sub-histogram equalization technique without over-equalization noise. Int. J. Electr. Comput. Eng. 3(2), 189–195 (2009)

    Google Scholar 

  5. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39, 355–368 (1987)

    Article  Google Scholar 

  6. Ooi, C.H., Isa, N.A.M.: Adaptive contrast enhancement methods with brightness preserving. IEEE Trans. Consum. Electron. 56(4), 2543–2551 (2010)

    Article  Google Scholar 

  7. Zhu, Y., Huang, C.: An adaptive histogram equalization algorithm on the image gray level mapping. Phys. Procedia 25, 601–608 (2012)

    Article  Google Scholar 

  8. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  9. Jordanski, M., Arsic, A., Tuba, M.: Dynamic recursive subimage histogram equalization algorithm for image contrast enhancement. In: Telecommunications Forum Telfor (TELFOR), pp. 819–822 (2015)

    Google Scholar 

  10. Sun, C.C., Ruan, S.J., Shie, M.C., Pai, T.W.: Dynamic contrast enhancement based on histogram specification. IEEE Trans. Consum. Electron. 51(4), 1300–13005 (2005)

    Article  Google Scholar 

  11. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  12. Chen, S.D., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1318 (2003)

    Article  Google Scholar 

  13. Zhai, D., Wu, C., Zeng, Q.: Brightness preserving multipeak histogram equalization. Comput. Simul. 26(1), 222–224 (2009)

    Google Scholar 

  14. Patel, O.P., Marvai, Y.P.S., Sharma, S.: A comparative study of histogram equalization based image enhancement techniques for brightness preservation and contrast enhancement. Sig. Image Process. J. (SIPIJ) 4(5), 11–25 (2013)

    Article  Google Scholar 

  15. Kaur, M., Kaur, J., Kaur, J.: Survey of contrast enhancement techniques based on histogram equalization. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2(7), 137–141 (2011)

    MATH  Google Scholar 

  16. Raju, A., Dwarakish, G.S., Reddy, D.V.: A Comparative analysis of histogram equalization based techniques for contrast enhancement and brightness preserving. Int. J. Sig. Process. Image Process. Pattern Recogn. 6(5), 353–366 (2013)

    Google Scholar 

  17. Agarwal, R.: Bit planes histogram equalization for tone mapping of high contrast images. In: IEEE Proceedings of the Eighth International Conference on Computer Graphics, Imaging and Visualization, pp. 13–18 (2011)

    Google Scholar 

  18. Magudeeswaran, V., Ravichandran, C.G.: Fuzzy logic-based histogram equalization for image contrast enhancement. In: Mathematical Problems in Engineering (2013)

    Google Scholar 

  19. Tuba, M., Jordanski, M., Arsic, A.: Improved weighted thresholded histogram equalization algorithm for digital image contrast enhancement using the bat algorithm. In: Bio-Inspired Computation and Applications in Image Processing, pp. 61–86 (2017)

    Chapter  Google Scholar 

  20. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  21. Janssen, T.J.W.M., Blommaert, F.J.: Computational approach to image quality. Displays 21(4), 129–142 (2000)

    Article  Google Scholar 

  22. Avcibas, I., Sankur, B., Sayood, K.: Statistical evaluation of image quality measures. J. Electron. Imag. 11(2), 206–223 (2002)

    Article  Google Scholar 

  23. Ratan, R., Arvind: Bit-plane specific measures and its applications in analysis of image ciphers. In: Thampi, S.M., Marques, O., Krishnan, S., Li, K.C., Ciuonzo, D., Kolekar, M. (eds.) SIRS 2018. CCIS, vol. 968, pp. 282–297. Springer, Singapore. https://doi.org/10.1007/978-981-13-5758-9_24

    Google Scholar 

  24. Standard test images. Image Databaes. www.imageprocessingplace.com

  25. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Analys. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  26. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Boston (1992)

    Google Scholar 

  27. Miano, J.M.: Compressed Image File Formats JPEG, PNG, GIF, XBM, BMP. Addison Wesley, Boston (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Ratan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arvind, Ratan, R. (2019). Bit-Plane Specific Selective Histogram Equalization for Image Enhancement and Representation. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9181-1_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9180-4

  • Online ISBN: 978-981-13-9181-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics