Abstract
Video surveillance is currently proactive research theme in computer vision. It can be classified as Normal, Aerial and Maritime video surveillance. The maritime surveillance will observe all the maritime activities effectively which strengthen the security, the environment, and the economy etc. Since, maritime transportation is very important to the national security because more than 80% of world trade depends on safe maritime route. It is very essential to be conscious of every time what is happening under and on the surface of sea and coastal area to its continued safety, prosperity and environment. So the employments of maritime surveillance poses the significant challenges. This effort is on the consolidation and thorough survey of state-of-the-art of maritime surveillance methods like detection and tracking of object with occlusion handling. Occlusion takes place when distant targets are hidden by objects closer to the observer which might be full or partial. Occlusion is still a major challenge due to the dynamic nature of the ocean which will further affect the effective tracking of the maritime object. The survey work carried out has revealed that very less amount of work has been reported on maritime detection and tracking of object with occlusion handling and finally, comparison have been tabulated on state-of-the-art of the detection of object and tracking with occlusion handling techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)
Al Najjar, M., Ghantous, M., Bayoumi, M.: Video Surveillance for Sensor Platforms. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4614-1857-3
Bachoo, A.K., Le Roux, F., Nicolls, F.: An optical tracker for the maritime environment. In: SPIE Defense, Security, and Sensing, p. 80501G. International Society for Optics and Photonics (2011)
Bao, X., Zinger, S., Wijnhoven, R., de With, P.H.N.: Water region detection supporting ship identification in port surveillance. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 444–454. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33140-4_39
Bao, X., Zinger, S., Wijnhoven, R., et al.: Robust moving ship detection using context-based motion analysis and occlusion handling. In: Sixth International Conference on Machine Vision (ICMV 13), p. 90670F. International Society for Optics and Photonics (2013)
Bao, X., Zinger, S., Wijnhoven, R., et al.: Ship detection in port surveillance based on context and motion saliency analysis. In: IS&T/SPIE Electronic Imaging, p. 86630D. International Society for Optics and Photonics (2013)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Bibby, C., Reid, I.: Visual tracking at sea. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 1841–1846. IEEE (2005)
Bloisi, D.D., Previtali, F., Pennisi, A., Nardi, D., Fiorini, M.: Enhancing automatic maritime surveillance systems with visual information. IEEE Trans. Intell. Transp. Syst. 18, 824–833 (2016)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Breiman, L.: Classification and Regression Trees. Routledge, London (2017)
Collins, R.T.: Mean-shift blob tracking through scale space. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p. II-234. IEEE (2003)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_48
Fefilatyev, S.: Algorithms for visual maritime surveillance with rapidly moving camera (2012)
Frost, D., Tapamo, J.R.: Detection and tracking of moving objects in a maritime environment using level set with shape priors. EURASIP J. Image Video Process. 2013(1), 42 (2013)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)
Leira, F.S., Johansen, T.A., Fossen, T.I.: Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera. In: 2015 IEEE Aerospace Conference, pp. 1–10. IEEE (2015)
Liu, C., et al.: Beyond pixels: exploring new representations and applications for motion analysis. Ph.D. thesis, Massachusetts Institute of Technology (2009)
Mou, X., Wang, H., Lim, K.L.: Scale-adaptive multiple-obstacle tracking with occlusion handling in maritime scenes. In: 2016 12th IEEE International Conference on Control and Automation (ICCA), pp. 588–592. IEEE (2016)
Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Industr. Appl. Math. 5(1), 32–38 (1957)
Muñoz-Salinas, R.: A Bayesian plan-view map based approach for multiple-person detection and tracking. Pattern Recogn. 41(12), 3665–3676 (2008)
Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104. IEEE (2004)
Rout, R.K.: A survey on object detection and tracking algorithms. Ph.D. thesis (2013)
Serra, J., Vincent, L.: An overview of morphological filtering. Circ. Syst. Sig. Process. 11(1), 47–108 (1992)
Shaikh, S.H., Saeed, K., Chaki, N.: Moving object detection using background subtraction. Moving Object Detection Using Background Subtraction. SCS, pp. 15–23. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07386-6_3
Szpak, Z.L., Tapamo, J.R.: Maritime surveillance: tracking ships inside a dynamic background using a fast level-set. Expert Syst. Appl. 38(6), 6669–6680 (2011)
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Wang, H., et al.: Vision based long range object detection and tracking for unmanned surface vehicle. In: 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 101–105. IEEE (2015)
Wang, H., Wei, Z.: Stereovision based obstacle detection system for unmanned surface vehicle. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 917–921. IEEE (2013)
Wei, H., Nguyen, H., Ramu, P., Raju, C., Liu, X., Yadegar, J.: Automated intelligent video surveillance system for ships. In: SPIE Defense, Security, and Sensing, p. 73061N. International Society for Optics and Photonics (2009)
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 127–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_9
Zhou, S.K., Chellappa, R., Moghaddam, B.: Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans. Image Process. 13(11), 1491–1506 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Banu, R., Sidram, M.H. (2019). Object Detection and Tracking with Occlusion Handling in Maritime Surveillance-A Review. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_8
Download citation
DOI: https://doi.org/10.1007/978-981-13-9181-1_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9180-4
Online ISBN: 978-981-13-9181-1
eBook Packages: Computer ScienceComputer Science (R0)