Skip to main content

Contrast Stretching-Based Unwanted Artifacts Removal from CT Images

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Abstract

This paper presents a contrast stretching-based image enhancement technique to remove unwanted artifacts, such as flesh and to enhance bony regions from Computed Tomographic (CT) images. Our technique is based on enhancing the dynamic range of the image by linear contrast stretching through histogram modeling and intensity transformation function. The intensity range: low and high-intensity values are heuristically computed, and squared shape mask is moved to clean the image further. Experiments are carried out on several patient-specific CT images (source: Prism Medical Diagnostics lab, Chhatrapati Shivaji Maharaj Sarvopachar Ruganalay and Ashwini Hospital, India). Our results show that the technique provides the reliable promising results. Besides, the tool is simple, faster and easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Communicated fracture: Type of fracture in which bone is broken into multiple pieces possibly with dislocation.

  2. 2.

    DICOM: Digital Imaging and Communications in Medicine.

  3. 3.

    HIPPA: Health Insurance Portability and Accountability Act.

  4. 4.

    IRB: Institutional Review Board.

References

  1. Abdelsamea, M.M.: An automatic seeded region growing for 2D biomedical image segmentation (2014). arXiv preprint, arXiv:1412.3958

  2. Bankman, I.: Handbook of Medical Image Processing and Analysis. Elsevier, Amsterdam (2008)

    Google Scholar 

  3. Descoteaux, M., Audette, M., Chinzei, K., Siddiqi, K.: Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. Comput. Aided Surg. 11(5), 247–255 (2006)

    Article  Google Scholar 

  4. Diwakar, M., Kumar, M.: CT image noise reduction based on adaptive Wiener filtering with wavelet packet thresholding. In: 2014 International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 94–98. IEEE (2014)

    Google Scholar 

  5. Egol, K.A., Koval, K.J., Zuckerman, J.D.: Handbook of Fractures. Lippincott Williams & Wilkins, Philadelphia (2010)

    Google Scholar 

  6. Fornaro, J., Székely, G., Harders, M.: Semi-automatic segmentation of fractured pelvic bones for surgical planning. In: Bello, F., Cotin, S. (eds.) ISBMS 2010. LNCS, vol. 5958, pp. 82–89. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11615-5_9

    Chapter  Google Scholar 

  7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2012)

    Google Scholar 

  8. Harders, M., Barlit, A., Gerber, C., Hodler, J., Székely, G.: An optimized surgical planning environment for complex proximal humerus fractures. In: MICCAI Workshop on Interaction in Medical Image Analysis and Visualization, vol. 30 (2007)

    Google Scholar 

  9. Hegadi, R.S., Navale, D.I., Pawar, T.D., Ruikar, D.D.: Multi feature-based classification of osteoarthritis in knee joint X-ray images. In: Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques, chap. 5. CRC Press (2019). ISBN 9780367139612

    Google Scholar 

  10. Hemanth, D.J., Anitha, J.: Image pre-processing and feature extraction techniques for magnetic resonance brain image analysis. In: Kim, T., Ko, D., Vasilakos, T., Stoica, A., Abawajy, J. (eds.) FGCN 2012. CCIS, vol. 350, pp. 349–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35594-3_47

    Chapter  Google Scholar 

  11. Hounsfield, G.N.: Computed medical imaging. Med. Phys. 7(4), 283–290 (1980)

    Article  Google Scholar 

  12. Hunter, E.J., Palaparthi, A.K.R.: Removing patient information from MRI and CT images using MATLAB. National Repository for Laryngeal Data Technical Memo No. 3 (version 2.0), pp. 1–4 (2015)

    Google Scholar 

  13. Kang, Y., Engelke, K., Kalender, W.A.: A new accurate and precise 3D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 22(5), 586–598 (2003)

    Article  Google Scholar 

  14. Ke, L., Zhang, R.: Multiscale Wiener filtering method for low-dose CT images. In: 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), vol. 1, pp. 428–431. IEEE (2010)

    Google Scholar 

  15. Lai, J.Y., Essomba, T., Lee, P.Y.: Algorithm for segmentation and reduction of fractured bones in computer-aided preoperative surgery. In: Proceedings of the 3rd International Conference on Biomedical and Bioinformatics Engineering, pp. 12–18. ACM (2016)

    Google Scholar 

  16. Lin, Z., Jin, J., Talbot, H.: Unseeded region growing for 3D image segmentation. In: Selected Papers from the Pan-Sydney Workshop on Visualisation, vol. 2, pp. 31–37. Australian Computer Society, Inc. (2000)

    Google Scholar 

  17. Mancas, M., Gosselin, B., Macq, B.: Segmentation using a region-growing thresholding. In: Image Processing: Algorithms and Systems IV, vol. 5672, pp. 388–399. International Society for Optics and Photonics (2005)

    Google Scholar 

  18. Paulano, F., Jiménez, J.J., Pulido, R.: 3D segmentation and labeling of fractured bone from CT images. Vis. Comput. 30(6–8), 939–948 (2014)

    Article  Google Scholar 

  19. Ritter, F., et al.: Medical image analysis. IEEE Pulse 2(6), 60–70 (2011)

    Article  Google Scholar 

  20. Ruggieri, V.G., et al.: CT-scan images preprocessing and segmentation to improve bioprosthesis leaflets morphological analysis. Med. Hypotheses 81(1), 86–93 (2013)

    Article  Google Scholar 

  21. Ruikar, D.D., Hegadi, R.S., Santosh, K.C.: A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(9), 168 (2018)

    Article  Google Scholar 

  22. Ruikar, D.D., Santosh, K.C., Hegadi, R.S.: Automated fractured bone segmentation and labeling from CT images. J. Med. Syst. 43(3), 60 (2019). https://doi.org/10.1007/s10916-019-1176-x

    Article  Google Scholar 

  23. Ruikar, D.D., Santosh, K.C., Hegadi, R.S.: Segmentation and analysis of CT images for bone fracture detection and labeling. In: Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques, chap. 7. CRC Press (2019). ISBN 9780367139612

    Google Scholar 

  24. Ruikar, D.D., Sawat, D.D., Santosh, K.C., Hegadi, R.S.: 3D imaging in biomedical applications: a systematic review. In: Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques, chap. 8. CRC Press (2019). ISBN 9780367139612

    Google Scholar 

  25. Santosh, K.C., Roy, P.P.: Arrow detection in biomedical images using sequential classifier. Int. J. Mach. Learn. Cybern. 9(6), 993–1006 (2018)

    Article  Google Scholar 

  26. Santosh, K.C., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell. Syst. 31(3), 66–75 (2016)

    Article  Google Scholar 

  27. Shapurian, T., Damoulis, P.D., Reiser, G.M., Griffin, T.J., Rand, W.M.: Quantitative evaluation of bone density using the hounsfield index. Int. J. Oral Maxillofac. Implants 21(2) (2006)

    Google Scholar 

  28. Vasilache, S., Najarian, K.: Automated bone segmentation from pelvic CT images. In: 2008 IEEE International Conference on Bioinformatics and Biomeidcine Workshops, pp. 41–47. IEEE (2008)

    Google Scholar 

  29. Willis, A., Anderson, D., Thomas, T., Brown, T., Marsh, J.L.: 3D reconstruction of highly fragmented bone fractures. In: Medical Imaging 2007: Image Processing, vol. 6512, p. 65121P. International Society for Optics and Photonics (2007)

    Google Scholar 

Download references

Acknowledgments

Authors thank the Ministry of Electronics and Information Technology (MeitY), New Delhi for granting Visvesvaraya Ph.D. fellowship through file no. PhD-MLA\(\backslash \)4(34)\(\backslash \)201-1. Dated: 05/11/2015.

The first author would like to thank Dr. Jamma and Dr. Jagtap for providing expert guidance on bone anatomy. Along with this, he also would like to thank, Prism Medical Diagnostics lab, Chhatrapati Shivaji Maharaj Sarvopachar Ruganalay and Ashwini Hospital for providing patient-specific CT images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshan D. Ruikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruikar, D.D., Santosh, K.C., Hegadi, R.S. (2019). Contrast Stretching-Based Unwanted Artifacts Removal from CT Images. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1036. Springer, Singapore. https://doi.org/10.1007/978-981-13-9184-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9184-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9183-5

  • Online ISBN: 978-981-13-9184-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics