Abstract
The applications in nanotechnology require customized nanopore membrane. The structure and number of nanopore on the oxidized metal template rely upon the anodizing parameters used in the electro-chemical cell during the nanopore synthesis. The fundamental idea of this paper is to develop an automated system to quantify the effect of time on aluminum nanopore through advanced minuscule FESEM images. The test results foresee that, the increase in anodization time results in gradual increment in porosity and pore size estimating from 0.234% to 2.034% and 32 nm to 78 nm respectively and shrinking in nanopore wall thickness from 58 nm to 41 nm. The anticipated after effects of the following conceivable development of aluminum nanopore size and wall thickness are processed by applying factual investigation (statistical analysis) and building the principles of fuzzy inference system. The manual and test results are compared, analyzed and deciphered to exhibit the competence of the proposed technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Victor, V., et al.: Unveiling the hard anodization regime of aluminum: insight into the nanopore self-organization and growth mechanism. ACS Appl. Mater. Interfaces 7(51), 28682–28692 (2015)
Santos, A., Macías, G., Ferre-Borrull, J., Pallare, S.J., Marsal, L.F.: Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ACS Appl. Mater. Interfaces 4(7), 3584–3588 (2012)
Kumeria, T., Rahman, M.M., Santos, A., Ferre-Borrull, J., Marsal, L.F., Losic, D.: Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of-analysis systems. ACS Appl. Mater. Interfaces 6(15), 12971–12978 (2014)
Chen, Y., et al.: Biomimetic nanoporous anodic alumina distributed bragg reflectors in the form of films and microsized particles for sensing applications. ACS Appl. Mater. Interfaces 7(35), 19816–19824 (2015)
Romero, V., et al.: Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Interfaces 5(9), 3556–3564 (2013)
Law, C.S., Santos, A., Kumeria, T., Losic, D.: Engineered therapeutic-releasing nanoporous anodic alumina-aluminum wires with extended release of therapeutics. ACS Appl. Mater. Interfaces 7(6), 3846–3853 (2015)
Vengatesh, P., Kulandainathan, M.A.: Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl. Mater. Interfaces 7(5), 1516–1526 (2015)
Munoz, R.M., Grauby, S., Rampnoux, J.M., Caballero-Calero, O., Martin-Gonzalez, M., Dilhaire, S.: Fabrication of Bi\(_2\)Te\(_3\) nanowire arrays and thermal conductivity measurement by 3\(\omega \)-scanning thermal microscopy. J. Appl. Phys. 113, 054308 (2013). https://doi.org/10.1063/1.4790363
Bohnert, T., Vega, V., Michel, A.K., Prida, V.M., Nielsch, K.: Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407 (2013). https://doi.org/10.1063/1.4819949
Dudem, B., Ko, Y.H., Leem, J.W., Lee, S.H., Yu, J.S.: Highly transparent and flexible triboelectric nanogenerators with sub-wavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl. Mater. Interfaces 7(37), 20520–20529 (2015)
Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S.B., Rubloff, G.W.: Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292–296 (2009)
Liang, Y., et al.: Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage. Am. Chem. Soc. 132(42), 15030–15037 (2010)
Min, H.L., et al.: Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 11, 3425–3430 (2011)
Shwetabh, S.: Microscopic image analysis of nanoparticles by edge detection using ant colony optimization. J. Comput. Eng. 11(3), 84–89 (2013)
Bannigidad, P., Vidyasagar, C.C.: Effect of time on anodized \(Al_{2}O_{3}\) nanopore FESEM images using digital image processing techniques: a study on computational chemistry. IJETTCS 4(3), 15–22 (2015). ISSN 2278–6856
Muneesawang, P., Sirisathitkul, C.: Size measurement of nanoparticle assembly using multilevel segmented TEM images. J. Nanomater. 16, 58 (2015)
De, S., Biswas, N., Sanyal, A., Ray, P., Datta, A.: Detecting subsurface circular objects from low contrast noisy images: applications in microscope image enhancement. World Acad. Sci. Eng. 67, 1317–1323 (2012)
Vidyasagar, C.C., Bannigidad, P., Muralidhara, H.B.: Influence of anodizing time on porosity of nanopore structures grown on flexible TLC aluminium films and analysis of images using MATLAB software. Adv. Mater. Lett. 7(1), 71–77 (2016)
Hiremath, P.S., Bannigidad, P.: Digital microscopic bacterial cell growth analysis and cell division time determination for escherichia coli using fuzzy inference system. In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K., Balakrishnan, N. (eds.) ADCONS 2011. LNCS, vol. 7135, pp. 207–215. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29280-4_23
Belwalkar, A., Grasing, E., Van Geertruyden, W., Huang, Z., Misiolek, W.Z.: Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Memb. Sci. 319, 192–198 (2008)
Santosh, K.C., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell. Syst. 31(3), 66–75 (2016)
Santosh, K.C., Roy, P.P.: Arrow detection in biomedical images using sequential classifier. Int. J. Mach. Learn. Cybern. 9(6), 993–1006 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Bannigidad, P., Udoshi, J., Vidyasagar, C.C. (2019). Effect of Time on Aluminium Oxide FESEM Nanopore Images Using Fuzzy Inference System. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1037. Springer, Singapore. https://doi.org/10.1007/978-981-13-9187-3_36
Download citation
DOI: https://doi.org/10.1007/978-981-13-9187-3_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9186-6
Online ISBN: 978-981-13-9187-3
eBook Packages: Computer ScienceComputer Science (R0)