Abstract
Convolution neural network recently confirmed the high-quality reconstruction for single-image super-resolution (SR). In this paper we present a Deep Level Residual Network (DLNR), a low-memory effective neural network to reconstruct super-resolution images. This neural network also has the following characteristics. (1) Ability to perform different convolution size operations on the image which can achieve more comprehensive feature extraction effects. (2) Using residual learning to expand the depth of the network and increase the capacity of learning. (3) Taking the skill of parameter sharing between the network module to reduce the number of parameters. After the experiment, we find that DLNR can achieve 37.78 in PSNR and 0.975 in SSIM when using Manga109 as testing set for 2× SR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981). https://doi.org/10.1109/TASSP.1981.1163711
Numerical Recipes in C. Cambridge University Press, pp. 123–128 (1988–92). ISBN 0-521-43108-5
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: CVPR (2015)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)
He, K., Zhang, X.,. Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems 21 (NIPS 2008). MIT Press (2008)
Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: IEEE International Conference on Computer Vision (2015)
Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
Ghiasi, G., Fowlkes, C.C.: Laplacian pyramid reconstruction and refinement for semantic segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 519–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_32
Paris, S., Hasinoff, S.W., Kautz, J.: Local laplacian filters: edge-aware image processing with a laplacian pyramid. ACM Trans. Graph. 30(4), 68 (2011). (Proceedings of SIGGRAPH)
Denton, E.L., Chintala, S., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: Neural Information Processing Systems (2015)
Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi Morel, M.L.: Low complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)
Huang, J.-B., Singh, A., Ahuja, N.: Single image super resolution from transformed self-exemplars. In: CVPR (2015)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, WT., Chen, PY., Lin, BC. (2019). Deep Residual Neural Network Design for Super-Resolution Imaging. In: Chang, CY., Lin, CC., Lin, HH. (eds) New Trends in Computer Technologies and Applications. ICS 2018. Communications in Computer and Information Science, vol 1013. Springer, Singapore. https://doi.org/10.1007/978-981-13-9190-3_9
Download citation
DOI: https://doi.org/10.1007/978-981-13-9190-3_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9189-7
Online ISBN: 978-981-13-9190-3
eBook Packages: Computer ScienceComputer Science (R0)