Skip to main content

Tiny Vehicle Detection from UAV Imagery

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1043))

Included in the following conference series:

Abstract

In the past decade, great progress has been made in general object detection based on deep convolutional neural networks. However, object detection from Unmanned Aerial Vehicles (UAV) imagery received not so much concern. In this paper, a densely connected feature mining network is proposed for high accuracy detection. Specifically, multi-scale predictions are used to enhance the feature representation of the tiny vehicles. Furthermore, a streamlined one-stage detection network is used to achieve satisfactory trade-off between speed and accuracy. Finally, a improved distance metric function is integrated into the priors clustering process, which can lead to a better preliminary location before training. The proposed architecture is evaluated on the highly competitive UAV benchmark (UAVDT). The experimental results show that the proposed dense-darknet network has achieved a competitive performance of 42.03% mAP (mean Average Precision) and good generalization ability on the other UAV benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: a review (2018)

    Google Scholar 

  2. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: International Conference on Neural Information Processing Systems (2015)

    Google Scholar 

  3. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015)

    Google Scholar 

  4. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2014)

    Article  Google Scholar 

  6. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks (2016)

    Google Scholar 

  7. Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K.: The unmanned aerial vehicle benchmark: object detection and tracking (2018)

    Chapter  Google Scholar 

  8. Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M.C., Qi, H., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. In: Computer Science (2015)

    Google Scholar 

  9. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. Far East J. Math. Sci. 2(2), 445–461 (2016)

    Google Scholar 

  10. Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y.: RON: reverse connection with objectness prior networks for object detection. In: CVPR (2017)

    Google Scholar 

  11. Everingham, M., et al.: The 2005 PASCAL visual object classes challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 117–176. Springer, Heidelberg (2006). https://doi.org/10.1007/11736790_8

    Chapter  Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  15. Zhu, P., Wen, L., Dawei, D., Xiao, B., Ling, H., Hu, Q., et al.: VisDrone-DET2018: the vision meets drone object detection in image challenge results (2018)

    Google Scholar 

  16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2016)

    Google Scholar 

  17. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks (2016)

    Google Scholar 

  18. Gao, H., Zhuang, L., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision & Pattern Recognition (2017)

    Google Scholar 

  19. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks (2017)

    Google Scholar 

  20. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  21. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018)

    Google Scholar 

  22. Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., Yang, S.: AdaNet: adaptive structural learning of artificial neural networks (2016)

    Google Scholar 

  23. Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of DenseNets (2017)

    Google Scholar 

  24. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger (2017)

    Google Scholar 

  25. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints (2018)

    Chapter  Google Scholar 

  26. Zhang, T., Wang, R., Ding, J.: A discriminative feature learning based on deep residual network for face verification. In: Wang, Y., Jiang, Z., Peng, Y. (eds.) IGTA 2018. CCIS, vol. 875, pp. 411–420. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1702-6_41

    Chapter  Google Scholar 

  27. Zhang, X., Wang, R., Ding, J.: Abnormal event detection by learning spatiotemporal features in videos. In: Wang, Y., Jiang, Z., Peng, Y. (eds.) IGTA 2018. CCIS, vol. 875, pp. 421–431. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1702-6_42

    Chapter  Google Scholar 

  28. Zhou, J., Wang, R., Ding, J.: Deep convolutional features for correlation filter based tracking with parallel network. In: Wang, Y., Jiang, Z., Peng, Y. (eds.) IGTA 2018. CCIS, vol. 875, pp. 461–470. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1702-6_46

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key Research and Development Plan under Grant No. 2016YFC0801005. This work is supported by Grant No. 2018JXYJ49.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Wang, R., Ding, J. (2019). Tiny Vehicle Detection from UAV Imagery. In: Wang, Y., Huang, Q., Peng, Y. (eds) Image and Graphics Technologies and Applications. IGTA 2019. Communications in Computer and Information Science, vol 1043. Springer, Singapore. https://doi.org/10.1007/978-981-13-9917-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9917-6_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9916-9

  • Online ISBN: 978-981-13-9917-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics