Abstract
Denoising is an important image pre-processing operation required to improve the image quality. In the past, several image denoising solutions have been put forth with varying performances. Recently, deep-learning based approaches have given better results than conventional algorithms. While these methods offer promising results on denoising of natural images, their application to medical imaging is yet to be fully explored. In this study, mammographic images, which are generally corrupted with Gaussian noise, have been effectively denoised using a deep convolution neural network. The model proposed in this work outshines various existing state-of-the-art solutions. Our model achieves a structural similarity index (SSIM) of 0.98 and value of 41.53 dB for peak signal to noise ratio (PSNR).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goldman, L.W.: Principles of CT: radiation dose and image quality. J. Nucl. Med. Technol. 35(4), 213–225 (2007)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering. In: Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, vol. 6064, p. 606414 (2006)
Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)
Kervrann, C., Boulanger, J., Coupé, P.: Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 520–532. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72823-8_45
Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246. IEEE, December 2016
Simoncelli, E.P., Adelson, E.H.: Noise removal via Bayesian wavelet coring. In: Proceedings of IEEE International Conferences on Image Processing, pp. 379–382 (1996)
Starck, J.L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)
Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311 (2006)
Zhang, W., Doi, K., Giger, M.L., Wu, Y., Nishikawa, R.M., Schmidt, R.A.: Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med. Phys. 21(4), 517–524 (1994)
Lo, S.C., Lou, S.L., Lin, J.S., Freedman, M.T., Chien, M.V., Mun, S.K.: Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 14(4), 711–718 (1995)
Kawahara, J., Hamarneh, G.: Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 164–171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_20
Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_46
de Vos, B.D., Wolterink, J.M., de Jong, P.A., Viergever, M.A., IÅ¡gum, I.: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. In: Medical Imaging 2016: Image Processing, vol. 9784, p. 97841Y. International Society for Optics and Photonics, March 2016
Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D.: Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 17–21. IEEE, April 2015
Dou, Q., et al.: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35(5), 1182–1195 (2016)
Brosch, T., Tang, L.Y., Yoo, Y., Li, D.K., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5), 1229–1239 (2016)
Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016)
Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_29
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Benou, A., Veksler, R., Friedman, A., Riklin Raviv, T.: De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 95–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_11
Suckling, J., et al.: The mammographic image analysis society digital mammogram database exerpta medica. Int. Congr. Ser. 1069, 375–378 (1994)
Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)
Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399. IEEE, June 2012
Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, pp. 769–776 (2009)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)
Gao, R., Grauman, K.: On-demand learning for deep image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1086–1095, October 2017
Chollet, F.: Keras Github repository. https://github.com/keras-team/keras
Tensorflow. http://www.tensorflow.org
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Image and video denoising by sparse 3D transform-domain collaborative filtering. http://www.cs.tut.fi/~foi/GCF-BM3D/
Weighted Nuclear Norm Minimization for Image Denoising, Version 1.0. https://github.com/csjunxu/WNNM_CVPR2014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Singh, G., Mittal, A., Aggarwal, N. (2019). Deep Convolution Neural Network Based Denoiser for Mammographic Images. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-13-9939-8_16
Download citation
DOI: https://doi.org/10.1007/978-981-13-9939-8_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9938-1
Online ISBN: 978-981-13-9939-8
eBook Packages: Computer ScienceComputer Science (R0)