Abstract
According to recent trends in information technology, classroom learning is transformed to Web based learning. This transformation helps learner to trigger digital technologies anywhere and anytime. This paper plan to build a system that can harness the power of the brain and build smart and meaningful applications to make life easier. The major problem is emerged during online education is loose the learner’s active attention after some duration of time. This leads to the user getting distracted without having any mechanism to provide him with a feedback, as a result, online learning is not getting as much effective as classroom learning. Therefore, EEG device is used for data acquisition, to measure EEG signals and also to monitor the attention levels of user. Proposed project will collect the EEG data to calculate various parameters such as concentration level, attention level, etc. These parameters will be used in the smart applications to provide real-time analysis and feedback to the user. This technology will provide real-time feedback user who has enrolled in MOOCs. This should foresee whether the student struggles or not while learning to give convenient alarms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Penaloza, C., Mae, Y., Cuellar, F., Kojima, M., Arai, T.: Brain machine interface system automation considering user preferences and error perception feedback. In: IEEE Transactions on Automation Science and Engineering, vol. 11, no. 4 (2014)
Blankertz, B., Dornhege, G., Lemm, S., Krauledat, M., Curio, G., Müller, K.: The Berlin brain-computer interface: machine learning based detection of user specific brain states. J. Univ. Computer. Sci. 12(6), 581–607 (2006)
Millan, J.: On the need for on-line learning in brain-computer interfaces. MIT Press 38(4), 34–41 (2004)
Dornhege, G., Millán, J., Hinterberger, T., McFarland, D., Müller, K.: Toward Brain-Computer Interfacing. MIT Press, Cambridge (2007)
Dornhege, G., Krauledat, M., Müller, K., Blankertz, B.: General signal processing and machine learning tools for BCI. In: Toward Brain-Computer Interfacing, pp. 207–233. MIT Press, Cambridge (2007)
Katona, J., Ujbanyi, T., Sziladi, G., Kovari, A.: Speed control of Festo Robotino mobile robot using NeuroSky MindWave EEG headset based brain-computer interface. In: 7th IEEE International Conference on Cognitive Infocommunications, pp. 000251–000257 (2016)
Ekandem, J., Davis, T., Alvarez, I., James, M., Gilbert, J.: Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics 55, 592–598 (2012)
Bright, D., Nair, A., Salvekar, D., Bhisikar, S.: EEG-based brain controlled prosthetic arm. In: Advances in Signal Processing (CASP), pp. 479–483 (2016)
Tiwari, K., Saini, S.: Brain controlled robot using neurosky mindwave. J. Technol. Adv. Sci. Res. 1(4), 328–331 (2015)
Ang, A., Zhang, Z., Hung, Y., Mak, J.: A user-friendly wearable single-channel EOG-based human-computer interface for cursor control. In: IEEE Engineering in Medicine and Biology Society Conference on Neural Engineering Montpellier, April 2015
Blondet, M., Badarinath, A., Khanna, C., Jin, Z.: A wearable real-time BCI system based on mobile cloud computing. IEEE, January 2014
Dernoncourt F.: Replacing the computer mouse. In: Presented at the Boston Accessibility Conference, Cambridge, USA (2012)
Stinson, B., Arthur, D.: A novel EEG for alpha brain state training, neurobiofeedback and behavior change. Complement. Ther. Clin. Pract. 19, 114–118 (2013)
Ghodake, A., Shelke, S.D.: Brain controlled home automation system. In: 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–4 (2016)
Eldenfria, A., Al-Samarraie, H.: The effectiveness of an online learning system based on aptitude scores: an effort to improve students’ brain activation. Educ. Inf. Technol. 2019, 1–15 (2019)
Acknowledgement
This Publication is an outcome of the R&D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Sharma, A., Gupta, S., Kaur, S., Kumar, P. (2019). Smart Learning System Based on EEG Signals. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1046. Springer, Singapore. https://doi.org/10.1007/978-981-13-9942-8_44
Download citation
DOI: https://doi.org/10.1007/978-981-13-9942-8_44
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9941-1
Online ISBN: 978-981-13-9942-8
eBook Packages: Computer ScienceComputer Science (R0)