Abstract
We propose a generic model to classify a given image by detecting a specific image patch. Employing MPEG-7 features along with feature selection populates the feature space which is used to train using SVM classier. Our work target toward classifying objects in an unclassified image. We propose a model that can detect objects through generic framework for larger classes. Our model gives an overall accuracy of over 97%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bastan, M., Cam, H., Gudukbay, U., Ulusoy, O.: BilVideo-7: an MPEG-7 compatible video indexing and retrieval system. IEEE MultiMedia 17(3), 62–73 (2010)
Marc’Aurelio Ranzato, F.J.H., Boureau, Y.-L., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007
Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Convolutional neural network committees for handwritten character classification. In: 2011 International Conference on Document Analysis and Recognition, 03 Nov 2011
Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1) (1998)
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control, Automation, Robotics Vision, Marina Bay Sands, Singapore, 10–12th Dec 2014 (ICARCV 2014)
Szummer, M., Picard, R.W.: Indoor-outdoor image classification. IEEE Compute Society
Al-doski, J., Mansor1, S.B., Shafri, H.Z.M.: Image classification in remote sensing. J. Environ. Earth Sci. 3(10) (2013). ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Gavrila, D.M., Philomin, V.: Real-time object detection for “smart” vehicles. In: Proceedings of the Seventh IEEE International Conference on Computer Vision
Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10(5), 1055–1064 (1999)
Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8, Oct 2007. IEEE
Griffin, G., Holub, A., Perona. P.: Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366, California Institute of Technology (2007)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Theodoridis, S.: Pattern recognition, p. 203. Elsevier B. V (2008). ISBN 9780080949123
Data set: MCIndoor20000 .https://github.com/bircatmcri/MCIndoor20000
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chaudhuri, D.R., Chandra, D., Mittal, A. (2020). Indoor Object Classification Using Higher Dimensional MPEG Features. In: Das, K., Bansal, J., Deep, K., Nagar, A., Pathipooranam, P., Naidu, R. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 1048. Springer, Singapore. https://doi.org/10.1007/978-981-15-0035-0_47
Download citation
DOI: https://doi.org/10.1007/978-981-15-0035-0_47
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-0034-3
Online ISBN: 978-981-15-0035-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)