Skip to main content

A Privacy-Preserving TPA-aided Remote Data Integrity Auditing Scheme in Clouds

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2019)

Abstract

The remote data integrity auditing technology can guarantee the integrity of outsourced data in clouds. Users can periodically run an integrity auditing protocol by interacting with cloud server, to verify the latest status of outsourced data. Integrity auditing requires user to take massive time-consuming computations, which would not be affordable by weak devices. In this paper, we propose a privacy-preserving TPA-aided remote data integrity auditing scheme based on Li et al.’s data integrity auditing scheme without bilinear pairings, where a third party auditor (TPA) is employed to perform integrity auditing on outsourced data for users. The privacy of outsourced data can be guaranteed against TPA in the sense that TPA could not infer its contents from the returned proofs in the integrity auditing phase. Our construction is as efficient as Li et al.’s scheme, that is, each procedure takes the same time-consuming operations in both schemes, and our solution does not increase the sizes of processed data, challenge and proof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced proofs of retrievability. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS 2014, pp. 831–843. ACM, New York (2014). https://doi.org/10.1145/2660267.2660310

  2. Ateniese, G., et al.: Remote data checking using provable data possession. ACM Trans. Inf. Syst. Secur. 14(1), 12:1–12:34 (2011). https://doi.org/10.1145/1952982.1952994

    Article  Google Scholar 

  3. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 598–609. ACM, New York (2007). https://doi.org/10.1145/1315245.1315318

  4. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 319–333. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_19

    Chapter  Google Scholar 

  5. Cui, H., Mu, Y., Au, M.H.: Proof of retrievability with public verifiability resilient against related-key attacks. IET Inf. Secur. 9(1), 43–49 (2015). https://doi.org/10.1049/iet-ifs.2013.0322

    Article  Google Scholar 

  6. Date, S.: Should you upload or ship big data to the cloud? Commun. ACM 59(7), 44–51 (2016). https://doi.org/10.1145/2909493

    Article  Google Scholar 

  7. Fan, X., Yang, G., Mu, Y., Yu, Y.: On indistinguishability in remote data integrity checking. Comput. J. 58(4), 823–830 (2015). https://doi.org/10.1093/comjnl/bxt137

    Article  Google Scholar 

  8. He, D., Kumar, N., Zeadally, S., Wang, H.: Certificateless provable data possession scheme for cloud-based smart grid data management systems. IEEE Trans. Ind. Inf. 14(3), 1232–1241 (2018). https://doi.org/10.1109/TII.2017.2761806

    Article  Google Scholar 

  9. He, D., Kumar, N., Wang, H., Wang, L., Choo, K.K.R.: Privacy-preserving certificateless provable data possession scheme for big data storage on cloud. Appl. Math. Comput. 314, 31–43 (2017). https://doi.org/10.1016/j.amc.2017.07.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Islam, S., Ouedraogo, M., Kalloniatis, C., Mouratidis, H., Gritzalis, S.: Assurance of security and privacy requirements for cloud deployment models. IEEE Trans. Cloud Comput. 6(2), 387–400 (2018). https://doi.org/10.1109/TCC.2015.2511719

    Article  Google Scholar 

  11. Juels, A., Kaliski Jr., B.S.: PoRs: Proofs of retrievability for large files. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 584–597. ACM, New York (2007). https://doi.org/10.1145/1315245.1315317

  12. Kamara, S.: Proofs of storage: theory, constructions and applications. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 7–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40663-8_4

    Chapter  Google Scholar 

  13. Kononchuk, D., Erkin, Z., van der Lubbe, J.C.A., Lagendijk, R.L.: Privacy-preserving user data oriented services for groups with dynamic participation. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 418–442. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_24

    Chapter  Google Scholar 

  14. Li, C., Wang, P., Sun, C., Zhou, K., Huang, P.: WiBPA: an efficient data integrity auditing scheme without bilinear pairings. Comput. Materi. Cont. 58(2), 319–333 (2019). https://doi.org/10.32604/cmc.2019.03856

    Article  Google Scholar 

  15. Li, X., Kumari, S., Shen, J., Wu, F., Chen, C., Islam, S.H.: Secure data access and sharing scheme for cloud storage. Wirel. Pers. Commun. 96(4), 5295–5314 (2017). https://doi.org/10.1007/s11277-016-3742-6

    Article  Google Scholar 

  16. Shacham, H., Waters, B.: Compact proofs of retrievability. J. Cryptol. 26(3), 442–483 (2013). https://doi.org/10.1007/s00145-012-9129-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Singh, G., Kaul, A., Mehta, S.: Secure k-NN as a service over encrypted data in multi-user setting. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 154–161, July 2018. https://doi.org/10.1109/CLOUD.2018.00027

  18. Tupakula, U., Varadharajan, V.: Trust enhanced security for tenant transactions in the cloud environment. Comput. J. 58(10), 2388–2403 (2014). https://doi.org/10.1093/comjnl/bxu048

    Article  Google Scholar 

  19. Wang, H.: Identity-based distributed provable data possession in multicloud storage. IEEE Trans. Serv. Comput. 8(2), 328–340 (2015). https://doi.org/10.1109/TSC.2014.1

    Article  Google Scholar 

  20. Wang, H., He, D., Tang, S.: Identity-based proxy-oriented data uploading and remote data integrity checking in public cloud. IEEE Trans. Inf. Forensics Secur. 11(6), 1165–1176 (2016). https://doi.org/10.1109/TIFS.2016.2520886

    Article  Google Scholar 

  21. Wang, H., Li, K., Ota, K., Shen, J.: Remote data integrity checking and sharing in cloud-based health Internet of Things. IEICE Trans. Inf. Syst. 99(8), 1966–1973 (2016). https://doi.org/10.1587/transinf.2015INI0001

    Article  Google Scholar 

  22. Wang, Y., Ding, Y., Wu, Q., Wei, Y., Qin, B., Wang, H.: Privacy-preserving cloud-based road condition monitoring with source authentication in vanets. IEEE Trans. Inf. Forensics Secur. 14(7), 1779–1790 (2019). https://doi.org/10.1109/TIFS.2018.2885277

    Article  Google Scholar 

  23. Wang, Y., Wu, Q., Qin, B., Shi, W., Deng, R.H., Hu, J.: Identity-based data outsourcing with comprehensive auditing in clouds. IEEE Trans. Inf. Forensics Secur. 12(4), 940–952 (2017). https://doi.org/10.1109/TIFS.2016.2646913

    Article  Google Scholar 

  24. Wang, Y., Wu, Q., Qin, B., Tang, S., Susilo, W.: Online/offline provable data possession. IEEE Trans. Inf. Forensics Secur. 12(5), 1182–1194 (2017). https://doi.org/10.1109/TIFS.2017.2656461

    Article  Google Scholar 

  25. Wang, Y., Pang, H., Deng, R.H., Ding, Y., Wu, Q., Qin, B.: Securing messaging services through efficient signcryption with designated equality test. Inf. Sci. 490, 146–165 (2019). https://doi.org/10.1016/j.ins.2019.03.039

    Article  Google Scholar 

  26. Wang, Y., Wu, Q., Qin, B., Chen, X., Huang, X., Lou, J.: Ownership-hidden group-oriented proofs of storage from pre-homomorphic signatures. Peer-to-Peer Networking and Applications, pp. 1–17 (2016).https://doi.org/10.1007/s12083-016-0530-8

    Article  Google Scholar 

  27. Yu, Y., et al.: Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage. IEEE Trans. Inf. Forensics Secur. (2016). https://doi.org/10.1109/TIFS.2016.2615853

    Article  Google Scholar 

Download references

Acknowledgment

This article is supported in part by the National Natural Science Foundation of China under projects 61772150 and 61862012, the Guangxi Key R&D Program under project AB17195025, the Guangxi Natural Science Foundation under grants 2018GXNSFDA281054 and 2018GXNSFAA281232, the National Cryptography Development Fund of China under project MMJJ20170217, the Guangxi Young Teachers’ Basic Ability Improvement Program under Grant 2018KY0194, and the open program of Guangxi Key Laboratory of Cryptography and Information Security under projects GCIS201621 and GCIS201702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, M., Ding, Y., Wang, Y., Wang, H., Wang, B., Liu, L. (2019). A Privacy-Preserving TPA-aided Remote Data Integrity Auditing Scheme in Clouds. In: Cheng, X., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2019. Communications in Computer and Information Science, vol 1058. Springer, Singapore. https://doi.org/10.1007/978-981-15-0118-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0118-0_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0117-3

  • Online ISBN: 978-981-15-0118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics