Skip to main content

Biological Network Modeling Based on Hill Function and Hybrid Evolutionary Algorithm

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1059))

  • 1350 Accesses

Abstract

Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, M., Belmonte, J.C.: Ground rules of the pluripotency gene regulatory network. Nature Rev. Genet. 18(3), 180 (2017)

    Article  Google Scholar 

  2. Chan, T.E., Stumpf, M.P.H., Babtie, A.C.: Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5(3), 251–267 (2017)

    Article  Google Scholar 

  3. Omranian, N., Eloundou-Mbebi, J.M.O., Mueller-Roeber, B., Nikoloski, Z.: Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. 6, 20533 (2016)

    Article  Google Scholar 

  4. Yeung, K.Y., Raftery, A.E., Young, W.C.: A posterior probability approach for gene regulatory network inference in genetic perturbation data. Math. Biosci. Eng. 13(6), 1241–1251 (2017)

    Article  MathSciNet  Google Scholar 

  5. Lam, K.Y., Westrick, Z.M., Müller, C.L., Christiaen, L., Bonneau, R.: Fused regression for multi-source gene regulatory network inference. PLoS Comput. Biol. 12(12), e1005157 (2016)

    Article  Google Scholar 

  6. Polynikis, A., Hogan, S.J., Bernardo, M.D.: Comparing different ODE modelling approaches for gene regulatory networks. J. Theor. Biol. 261(4), 511–530 (2009)

    Article  MathSciNet  Google Scholar 

  7. Santillán, M.: On the use of the hill functions in mathematical models of gene regulatory networks. Math. Model. Nat. Phenom. 3(2), 85–97 (2008)

    Article  MathSciNet  Google Scholar 

  8. Baralla, A., Cavaliere, M., de la Fuente, A.: Modeling and parameter estimation of the SOS response network in E.coli, MS thesis, University of Trento, Trento, Italy (2008)

    Google Scholar 

  9. Elahi, F.E., Hasan, A.: A method for estimating hill function-based dynamic models of gene regulatory networks. Royal Soc. Open Sci. 5(2), 171226 (2018)

    Article  Google Scholar 

  10. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimization. Adv. Eng. Softw. 69(7), 46–61 (2014)

    Article  Google Scholar 

  11. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172C, 371–381 (2016)

    Article  Google Scholar 

  12. Guha, D., Roy, P.K., Banerjee, S.: Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol. Comput. 27, 97–115 (2016)

    Article  Google Scholar 

  13. Pradhan, M., Roy, P.K., Pal, T.: Grey wolf optimization applied to economic load dispatch problems. Int. J. Electr. Power Energy Syst. 83, 325–334 (2016)

    Article  Google Scholar 

  14. Fahad, M., Aadil, F., Rehman, Z.U., Khan, S., Shah, P.A.: Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks. Comput. Electr. Eng. 70, 853–870 (2018)

    Article  Google Scholar 

  15. Zhang, Y., Pu, Y., Zhang, H., Cong, Y., Zhou, J.: An extended fractional Kalman filter for inferring gene regulatory networks using time-series data. Chemom. Intell. Lab. Syst. 138, 57–63 (2014)

    Article  Google Scholar 

  16. Kentzoglannakis, K., Poole, M.: A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architecture. IEEE/ACM Trans. Computat. Biol. Bioinf. 9(2), 358–372 (2012)

    Article  Google Scholar 

  17. Mandal, S., Saha, G., Pal, R.K.: Recurrent neural network based modeling of gene regulatory network using bat algorithm. J. Adv. Math. Comput. Sci. 23(5), 1–16 (2017)

    Article  Google Scholar 

  18. Noman, N., Iba, H.: Reverse engineering genetic networks using evolutionary computation. Genome Inf. 16(2), 205–214 (2005). International Conference on Genome Informatics

    Google Scholar 

  19. Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d’Alche–Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19, 138–148 (2003)

    Article  Google Scholar 

  20. Kimura, S., Sonoda, K., Yamane, S., Maeda, H., Matsumura, K., Hatakeyama, M.: Function approximation approach to the inference of reduced NGnet models of genetic networks. BMC Bioinf. 9(1), 23 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Wang, H. (2019). Biological Network Modeling Based on Hill Function and Hybrid Evolutionary Algorithm. In: Mao, R., Wang, H., Xie, X., Lu, Z. (eds) Data Science. ICPCSEE 2019. Communications in Computer and Information Science, vol 1059. Springer, Singapore. https://doi.org/10.1007/978-981-15-0121-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0121-0_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0120-3

  • Online ISBN: 978-981-15-0121-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics