Abstract
Detection of animals from a cluttered scene is not a trivial task. So far, convolutional neural network (CNN) architectures have served this purpose. We introduce stacked convolutional autoencoders (SCAE) for this purpose. It is an unsupervised stratified feature extractor that could be used for high-dimensional input images. We also introduce a hybrid feature extraction technique based on Fisher Vectors (FV) and stacked autoencoders (SAE). SCAE learns significant features utilizing plain stochastic gradient descent and finds a good initialization for CNNs so as to eliminate the various unique local minima of exceptionally non-convex target functions emerging in virtually all deep learning problems. We have proposed a parallel pipeline for both detecting animals in both visible and infrared images. The framework model has achieved 97% accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dewan, A.M., Islam, M.M., Kumamoto, T., et al.: Water Resource Manag. 21, 1601 (2007). https://doi.org/10.1007/s11269-006-9116-1
Dabarera, R., Rodrigo, R.: Vision based elephant recognition for management and conservation. In: Proceedings of the 2010 5th International Conference on Information and Automation for Sustainability, ICIAfS 2010 (2010). https://doi.org/10.1109/ICIAFS.2010.5715653
Goswami, A.V., et al.: Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson’s disease. Hum. Mol. Genet. 21(15), 3317–3332 (2012)
Vinod A.D., Kantilal. P.R.: Identification of Animal using IRIS Recognition. Int. J. Adv. Technol. Eng. Sci. 3(1) (2015)
Ardovini, R.: Ardovini R., 2008 Bela africana sp.n. dal West Africa, Senegal. Malacologia Mostra Mondiale XX, 12–13 (2008)
Chen, G., Han, T.X., He, Z., Kays, R., Forrester, T.: Deep convolutional neural network based species recognition for wild animal monitoring. In: IEEE International Conference on Image Processing (ICIP), pp. 858–862 (2014). https://doi.org/10.1109/icip.2014.7025172
Figueroa, K., Camarena-Ibarrola, A., GarcÃa, J., Villela, H.T.: Fast automatic detection of wildlife in images from trap cameras. In: Iberoamerican Congress on Pattern Recognition, pp. 940–947. Springer (2014). https://doi.org/10.1007/978-3-319-12568-8_114
Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning, pp. 1–17. Available from: https://www.semanticscholar.org/paper/Automatically-identifying%2C-counting%2C-and-describing-Norouzzadeh-Nguyen/2bff54fb3f6aacb0b89323da8db49491c5e1e4a5
Gomez, A., Salazar, A., Vargas, F.: Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks. Ecol. Inform. 41, 24–32 (2017). https://doi.org/10.1016/j.ecoinf.2017.07.004
Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol. 6791. Springer, Berlin, Heidelberg (2011)
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)
Cruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., González Osorio, F.A.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol. 8150. Springer, Berlin, Heidelberg (2013)
Lapuschkin, S., Binder, A., Montavon, G., Müller, K.-R., Samek, W.: Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, pp. 2912–2920 (2016). https://doi.org/10.1109/cvpr.2016.318
Guo, X., Liu, X., Zhu, E., Yin, J.: Deep Clustering with Convolutional Autoencoders. ICONIP (2017)
Wang, P., Liu, L., Shen, C., Huang, Z., van den Hengel, A., Tao Shen, H.: Multi-attention network for one shot learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6212–6220 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Meena, S.D., Agilandeeswari, L. (2020). Stacked Convolutional Autoencoder for Detecting Animal Images in Cluttered Scenes with a Novel Feature Extraction Framework. In: Das, K., Bansal, J., Deep, K., Nagar, A., Pathipooranam, P., Naidu, R. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 1057. Springer, Singapore. https://doi.org/10.1007/978-981-15-0184-5_44
Download citation
DOI: https://doi.org/10.1007/978-981-15-0184-5_44
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-0183-8
Online ISBN: 978-981-15-0184-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)