Abstract
In this paper, we describe LUNES-Blockchain, an agent-based simulator of blockchains that is able to exploit Parallel and Distributed Simulation (PADS) techniques to offer a high level of scalability. To assess the preliminary implementation of our simulator, we provide a simplified modelling of the Bitcoin protocol and we study the effect of a security attack on the consensus protocol in which a set of malicious nodes implements a filtering denial of service (i.e. Sybil Attack). The results confirm the viability of the agent-based modelling of blockchains implemented by means of PADS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alharby, M., van Moorsel, A.: Blocksim: a simulation framework for blockchain systems. SIGMETRICS Perform. Eval. Rev. 46(3), 135–138 (2019)
Aoki, Y., Otsuki, K., Kaneko, T., Banno, R., Shudo, K.: Simblock: a blockchain network simulator. In: Proceedings of the 2nd Workshop on Cryptocurrencies and Blockchains for Distributed Systems. CryBlock 2019, IEEE (2019)
Bitnodes: Global Bitcoin Nodes Distribution (2019). https://bitnodes.earn.com/
Buterin, V.: A next-generation smart contract and decentralized application platform. White Paper (2018). https://github.com/ethereum/wiki/wiki/White-Paper, https://github.com/ethereum/wiki/wiki/White-Paper. Last accessed 02 Mar 2018
Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation, pp. 173–186. OSDI 1999, USENIX Association, Berkeley, CA, USA (1999)
D’Angelo, G., Ferretti, S.: Highly intensive data dissemination in complex networks. J. Parallel Distrib. Comput. 99, 28–50 (2017)
D’Angelo, G., Ferretti, S.: Parallel And Distributed Simulation (PADS) Research Group (2019). http://pads.cs.unibo.it
D’Angelo, G., Ferretti, S., Marzolla, M.: A blockchain-based flight data recorder for cloud accountability. In: Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, pp. 93–98. CryBlock 2018, ACM, New York, NY, USA (2018)
D’Angelo, G.: The simulation model partitioning problem: an adaptive solution based on self-clustering. Simul. Model. Pract. Theor. (SIMPAT) 70, 1–20 (2017)
Egea-Lopez, E., Vales-Alonso, J., Martinez-Sala, A., Pavon-Mario, P., Garcia-Haro, J.: Simulation scalability issues in wireless sensor networks. Commun. Mag. IEEE 44(7), 64–73 (2006)
Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)
Ferretti, S.: Gossiping for resource discovering: an analysis based on complex network theory. Future Gener. Comput. Syst. 29(6), 1631–1644 (2013)
Fujimoto, R.: Parallel and Distributed Simulation Systems. Wiley & Sons, Hoboken (2000)
Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in bitcoin and ethereum networks (2018). CoRR abs/1801.03998
Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 3–16. CCS 2016, ACM, New York, NY, USA (2016)
Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the xor metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) Peer-to-Peer Syst., pp. 53–65. Springer, Berlin (2002). https://doi.org/10.1007/3-540-45748-8_5
Miller, A., Jansen, R.: Shadow-bitcoin: scalable simulation via direct execution of multi-threaded applications. In: 8th Workshop on Cyber Security Experimentation and Test (CSET 2015). USENIX Association, Washington, D.C. (August 2015)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://bitcoin.org/bitcoin.pdf
Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the topology of the bitcoin peer-to-peer network. In: 2016 International IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress, pp. 358–367 July (2016)
Stoykov, L., Zhang, K., Jacobsen, H.A.: Vibes: fast blockchain simulations for large-scale peer-to-peer networks: Demo. In: Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos, pp. 19–20. Middleware 2017, ACM, New York, NY, USA (2017)
Verigin, A.L.: Evaluating the Effectiveness of Sybil Attacks Against Peer-to-Peer Botnets (2018). http://hdl.handle.net/1828/5095
Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus protocols for blockchain networks (2019). CoRR abs/1904.04098
Zichichi, M., Contu, M., Ferretti, S., D’Angelo, G.: Likestarter: a smart-contract based social dao for crowdfunding. In: Proceedings of the 2nd Workshop on Cryptocurrencies and Blockchains for Distributed Systems. CryBlock 2019, IEEE (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Rosa, E., D’Angelo, G., Ferretti, S. (2019). Agent-Based Simulation of Blockchains. In: Tan, G., Lehmann, A., Teo, Y., Cai, W. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2019. Communications in Computer and Information Science, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-15-1078-6_10
Download citation
DOI: https://doi.org/10.1007/978-981-15-1078-6_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1077-9
Online ISBN: 978-981-15-1078-6
eBook Packages: Computer ScienceComputer Science (R0)