Skip to main content

Conv-LSTM: Pedestrian Trajectory Prediction in Crowded Scenarios

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1094))

Included in the following conference series:

Abstract

Pedestrian trajectory prediction is a challenging problem in the crowded and chaotic scenarios. Currently, the prediction error is still high because the input of Long Short-Term Memory (LSTM) network is a 1D vector, which cannot represent the spatial information of pedestrians. To tackle this, we propose to use tensors to represent the complex environmental information. Meanwhile, LSTM internal full connection is converted into full convolution to predict the spatiotemporal pedestrian trajectory sequences. The results show that our method reduces the displacement offset error better than recent works including Social-LSTM, SS-LSTM, CNN, Social-GAN, Scene-LSTM, providing more realistic trajectory prediction for the chaotic crowd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Li, F.-F., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: CVPR, pp. 961–971, June 2016

    Google Scholar 

  2. Song, X., Han, D., Sun, J.: A data-driven neural network approach to simulate pedestrian movement. Physica A-Stat. Mech. Appl. 509(11), 827–844 (2018)

    Article  Google Scholar 

  3. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M.: DESIRE: distant future prediction in dynamic scenes with interacting agents. In: CVPR (2017)

    Google Scholar 

  4. Su, H., Zhu, J., Dong, Y., Zhang, B.: Forecast the plausible paths in crowd scenes. In: IJCAI, pp. 2772–2778 (2017)

    Google Scholar 

  5. Vemula, A., Muelling, K., Oh, J.: Modeling cooperative navigation in dense human crowds. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1685–1692, May 2017

    Google Scholar 

  6. Song, X., Xie, H., Sun, J., Han, D.: Simulation of pedestrian rotation dynamics near crowded exits. IEEE Trans. Intell. Transp. Syst. 20(8), 3142–3155 (2019)

    Article  Google Scholar 

  7. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: ICCV, pp. 261–268 (2009)

    Google Scholar 

  8. Song, X., Ma, L., Ma, Y.: Selfishness- and selflessness-based models of pedestrian room evacuation. Physica A-stat. Mech. Appl. 447(4), 455–466 (2016)

    Article  Google Scholar 

  9. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft + hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection. arXiv preprint arXiv:1702.05552 (2017)

  10. Nam, H., Han, B.: Learning Multi-domain convolutional neural networks for visual tracking. In: Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)

    Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  12. Nikhil, N., Tran Morris, B.: Convolutional neural network for trajectory prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  13. Manh, H., Alaghband, G.: Scene-lstm: a model for human trajectory prediction. arXiv preprint arXiv:1808.04018 (2018)

  14. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: IEEE 12th International Conference on Computer Vision (ICCV), pp. 261–268 (2009)

    Google Scholar 

  15. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR, pp. 1345–1352 (2011)

    Google Scholar 

  16. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–971 (2016)

    Google Scholar 

  17. Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. arXiv:1710.04689 [cs] (2017)

  18. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: CVPR 2016, pp. 5308–5317 (2016)

    Google Scholar 

  19. Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194 (2018)

    Google Scholar 

  20. Bartoli, F., Lisanti, G., Ballan, L., Del Bimbo, A.: Context-Aware Trajectory Prediction, arXiv:1705.02503 [cs], May 2017

  21. Varshneya, D., Srinivasaraghavan, G.: Human Trajectory Prediction using Spatially aware Deep Attention Models. arXiv:1705.09436 [cs], May 2017

  22. Pellegrini, S., Ess, A., Schindler, K., et al.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks forlarge-scale image recognition. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  24. Lerner, A., Chrysanthou, Y., Lischinski, D.L: Crowds by example. In: Computer Graphics Forum, vol. 26, no. (3), pp. 655–664. Blackwell Publishing Ltd, Oxford (2007)

    Article  Google Scholar 

  25. Gupta, A., Johnson, J., Fei-Fei, L., et al.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  26. Song, X., Shi, W., Ma, Y.: Impact of informal networks on opinion dynamics in hierarchically formal organization. Physica A-stat. Mech. Appl. 436(10), 916–924 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, K., Song, X., Yu, H. (2019). Conv-LSTM: Pedestrian Trajectory Prediction in Crowded Scenarios. In: Tan, G., Lehmann, A., Teo, Y., Cai, W. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2019. Communications in Computer and Information Science, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-15-1078-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1078-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1077-9

  • Online ISBN: 978-981-15-1078-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics