Skip to main content

A Consortium Blockchain-Based Model for Data Sharing in Internet of Vehicles

  • Conference paper
  • First Online:
Smart City and Informatization (iSCI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1122))

Included in the following conference series:

Abstract

Internet of Vehicles (IoV) provides a broad range of services of data exchange of traffic information to improve the effectiveness of smart vehicles. However, the security issues in Internet of Vehicles are multifaceted: data theft, message tampering and forgery, etc., which results in possibilities of incorrect data sharing. To address above issues, we proposed an efficient blockchain-based data sharing model. In this paper, we leverage the consortium blockchain and enhanced Diffie-Hellman algorithm to build a trust decentralized verifying mechanism, which is designed to secure the data sharing process in IoV. To improve the performance, we optimize the consensus mechanism on our blockchain-based system by decreasing the consensus delay without affecting the correctness of consensus verifying. The security analysis and simulation experiments show that our model meets security requirements and the overhead from our system is acceptable for IoV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Contreras-Castillo, J., Zeadally, S., Guerrero-Ibañez, J.A.: Internet of vehicles: architecture, protocols, and security. IEEE Internet Things J. 5(5), 3701–3709 (2017)

    Article  Google Scholar 

  2. Wang, Q., Duan, G., Luo, E., Wang, G.: Research on internet of vehicles’ privacy protection based on tamper-proof with ciphertext. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 42–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_4

    Chapter  Google Scholar 

  3. Huang, X., Xu, C., Wang, P., Liu, H.: LNSC: a security model for electric vehicle and charging pile management based on blockchain ecosystem. IEEE Access 6, 13565–13574 (2018)

    Article  Google Scholar 

  4. Kang, J., Yu, R., Huang, X., Zhang, Y.: Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transp. Syst. 19(8), 2627–2637 (2017)

    Article  Google Scholar 

  5. Li, Y., Qi, F., Tang, Z.: Traceable and complete fine-grained revocable multi-authority attribute-based encryption scheme in social network. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 87–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_8

    Chapter  Google Scholar 

  6. Zeadally, S., Hunt, R., Chen, Y.S., Irwin, A., Hassan, A.: Vehicular ad hoc networks (VANETS): status, results, and challenges. Telecommun. Syst. 50(4), 217–241 (2012)

    Article  Google Scholar 

  7. Varshney, N., Roy, T., Chaudhary, N.: Security protocol for VANET by using digital certification to provide security with low bandwidth. In: 2014 International Conference on Communication and Signal Processing, pp. 768–772. IEEE (2014)

    Google Scholar 

  8. Li, L., et al.: CreditCoin: a privacy-preserving blockchain-based incentive announcement network for communications of smart vehicles. IEEE Trans. Intell. Transp. Syst. 19(7), 2204–2220 (2018)

    Article  Google Scholar 

  9. Zhang, X., Chen, X.: Data security sharing and storage based on a consortium blockchain in a vehicular adhoc network. IEEE Access 7, 58241–58254 (2019)

    Article  Google Scholar 

  10. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)

    Google Scholar 

  11. Gan, J., Li, Q., Chen, Z., Zhang, C.: Improvement of blockchain practical Byzantine fault tolerance consensus algorithm. J. Comput. Appl. 39(7), 2148–2155 (2019)

    Google Scholar 

  12. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  13. Lin, J., Li, M., Yang, D., Xue, G., Tang, J.: Sybil-proof incentive mechanisms for crowdsensing. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9. IEEE (2017)

    Google Scholar 

  14. Huang, W., Li, P., Zhang, T.: RSUs placement based on vehicular social mobility in VANETs. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1255–1260. IEEE (2018)

    Google Scholar 

  15. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenticated group Diffie-Hellman key exchange. In: Proceedings of the 8th ACM Conference on Computer and Communications Security, pp. 255–264. ACM (2001)

    Google Scholar 

  16. Johnston, A.M., Gemmell, P.S.: Authenticated key exchange provably secure against the man-in-the-middle attack. J. Cryptol. 15(2), 139–148 (2002)

    Article  MathSciNet  Google Scholar 

  17. Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of knowledge secure under concurrent man-in-the-middle attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_14

    Chapter  Google Scholar 

  18. Guan, Z., et al.: Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities. IEEE Commun. Mag. 56(7), 82–88 (2018)

    Article  Google Scholar 

  19. Royer, E.M., Toh, C.K.: A review of current routing protocols for ad hoc mobile wireless networks. IEEE Pers. Commun. 6(2), 46–55 (1999)

    Article  Google Scholar 

  20. Samad, A., Alam, S., Mohammed, S., Bhukhari, M.: Internet of vehicles (IoV) requirements, attacks and countermeasures. In: Proceedings of 12th INDIACom; INDIACom-2018; 5th International Conference on “Computing for Sustainable Global Development" IEEE Conference, New Delhi (2018)

    Google Scholar 

  21. Sun, Y., et al.: Security and privacy in the internet of vehicles. In: 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), pp. 116–121. IEEE (2015)

    Google Scholar 

  22. Abassi, R.: Vanet security and forensics: challenges and opportunities. Wiley Interdiscip. Rev.: Forensic Sci. 1(2), e1324 (2019)

    Google Scholar 

  23. Zeng, Y., Zhang, R.: Wireless information surveillance via proactive eavesdropping with spoofing relay. IEEE J. Sel. Top. Sig. Process. 10(8), 1449–1461 (2016)

    Article  Google Scholar 

  24. Azees, M., Vijayakumar, P., Deboarh, L.J.: EAAP: efficient anonymous authentication with conditional privacy-preserving scheme for vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 18(9), 2467–2476 (2017)

    Article  Google Scholar 

  25. Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32(3), 78–83 (2018)

    Article  Google Scholar 

  26. Dorri, A., Steger, M., Kanhere, S.S., Jurdak, R.: Blockchain: a distributed solution to automotive security and privacy. IEEE Commun. Mag. 55(12), 119–125 (2017)

    Article  Google Scholar 

  27. Bahsoun, J.P., Guerraoui, R., Shoker, A.: Making BFT protocols really adaptive. In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp. 904–913. IEEE (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61632009, in part by the Guangdong Provincial Natural Science Foundation under Grant 2017A030308006, and in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Zhou, L., Tang, Z., Wang, G. (2019). A Consortium Blockchain-Based Model for Data Sharing in Internet of Vehicles. In: Wang, G., El Saddik, A., Lai, X., Martinez Perez, G., Choo, KK. (eds) Smart City and Informatization. iSCI 2019. Communications in Computer and Information Science, vol 1122. Springer, Singapore. https://doi.org/10.1007/978-981-15-1301-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1301-5_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1300-8

  • Online ISBN: 978-981-15-1301-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics