Abstract
User-based attribute information, such as age and gender, is usually considered as user privacy information. It is difficult for enterprises to obtain user-based privacy attribute information. However, user-based privacy attribute information has a wide range of applications in personalized services, user behavior analysis and other aspects. Although many scholars have made achievements in user attribute prediction and other related fields, there are still two main problems that impede further improvement on the accuracy of classification: (1) Traditional machine learning classification merely takes each object as a single individual, ignoring the relationship between them; (2) At present, the popular Heterogeneous Path-Mine Information Network only considers whether the user has a relationship with the attributes of other nodes, rather than the degree of correlation of the attributes. It employs a linear regression model to fit the weight of meta-path, which is highly sensitive to outliers. To solve the above two problems, this paper advances the HetPathMine model and puts forward TPathMine model. With applying the number of clicks of attributes under each node to express the user’s emotional preference information, optimizations of the solution of meta-path weight are also presented. Based on meta-path in heterogeneous information networks, the new model integrates all relationships among objects into isomorphic relationships of classified objects. Matrix is used to realize the knowledge dissemination of category knowledge among isomorphic objects. The experimental results show that: (1) the prediction of user attributes based on heterogeneous information networks can achieve higher accuracy than traditional machine learning classification methods; (2) TPathMine model based on the number of clicks is more accurate in classifying users of different age groups, and the weight of each meta-path is consistent with human intuition or the real world situation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, J., Li, S.S., Wang, J., et al.: User age recognition based on hybrid classification/regression model. Chin. Sci. Inf. Sci. 08, 147–160 (2017)
Wang, Y., Xia, Y., et al.: Prediction of demographic information of mobile users. J. Univ. Electron. Sci. Technol. 44(6), 917–920 (2015)
Peng, H., et al.: Finegrained event categorization with heterogeneous graph convolutional networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3238–3245. AAAI Press (2019)
Liu, Y., et al.: Event detection and evolution based on knowledge base. In: 2018 KBCOM (2018)
Weber, I.,Castillo, C.: The demographics of web search. In: SIGIR’10: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 523–530. ACM, New York (2010)
Xu, X., Wang, J., Peng, H., Wu, R.: Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Comput. Hum. Behav. 98, 166–173 (2019)
Bi, B., Kosinski, M., Shokouhi, M., et al.: Inferring the demographics of search users social data meets search queries. ACM (2013)
He, Y., Song, Y., Li, J., Ji, C., Peng, J., Peng, H.: Hetespaceywalk: a heterogeneous spacey random walk for heterogeneous information network embedding. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM (2019)
Liu, Y., Peng, H., Li, J., Song, Y., Li, X.: Event detection and evolution in multi-lingual social streams. Frontiers of Computer Science (2019)
Statnikov, A., Aliferis, C.F., Hardin, D.P., et al.: Support Vector Regression (SVR). A Gentle Introduction to Support Vector Machines in Biomedicine: Volume 1: Theory and Methods
Yang, Y., Tang, J., Li, J., et al.: Learning to infer competitive relationships in heterogeneous networks. ACM Trans. Knowl. Discov. Data 12(1), 1–23 (2018)
Du, B., et al.: Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction. IEEE Trans. Intell. Transp. Syst. (2019)
Zhou, C.: Classification of heterogeneous information networks. Comput. Appl. Softw. 6, 330–333 (2014)
Luo, C., Guan, R., Wang, Z., et al.: HetPathMine: a novel transductive classification algorithm on heterogeneous information networks (2014)
Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 570–586. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_42
Cunchao, T.U., Yang, C., Liu, Z., et al.: Network representation learning: an overview. Scientia Sinica (Informationis) 47, 980–996 (2017)
Ji, H., Shi, C., Wang, B.: Attention based meta path fusion for heterogeneous information network embedding. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11012, pp. 348–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97304-3_27
Cao, X., Zheng, Y., Shi, C., et al.: Meta-path-based link prediction in schema-rich heterogeneous information network. Int. J. Data Sci. Anal. 3(4), 285–296 (2017)
Cen, Y., Jie, T., Zou, X., et al.: Representation learning for attributed multiplex heterogeneous network. In: The 25th ACM SIGKDD International Conference. ACM (2019)
Wang, X., et al.: Heterogeneous graph attention network. arXiv preprint arXiv:1903.07293 (2019)
Ara, L., Luo, X.: A data-driven network intrusion detection model based on host clustering and integrated learning: a case study on botnet detection. In: Wang, G., Feng, J., Bhuiyan, M.Z.A., Lu, R. (eds.) SpaCCS 2019. LNCS, vol. 11611, pp. 102–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24907-6_9
Montgomery, M., Chatterjee, P., Jenkins, J., Roy, K.: Touch analysis: an empirical evaluation of machine learning classification algorithms on touch data. In: Wang, G., Feng, J., Bhuiyan, M.Z.A., Lu, R. (eds.) SpaCCS 2019. LNCS, vol. 11611, pp. 147–156. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24907-6_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, H. et al. (2019). Mobile APP User Attribute Prediction by Heterogeneous Information Network Modeling. In: Wang, G., Bhuiyan, M.Z.A., De Capitani di Vimercati, S., Ren, Y. (eds) Dependability in Sensor, Cloud, and Big Data Systems and Applications. DependSys 2019. Communications in Computer and Information Science, vol 1123. Springer, Singapore. https://doi.org/10.1007/978-981-15-1304-6_23
Download citation
DOI: https://doi.org/10.1007/978-981-15-1304-6_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1303-9
Online ISBN: 978-981-15-1304-6
eBook Packages: Computer ScienceComputer Science (R0)