Abstract
Network Path Estimation is the problem of finding best paths among multiple potential routes between two devices, which is important to cyber situational awareness. In this context, information obtained from multiple sources and at different points in time must be integrated. However, duplicate representations of the same entities in different data sources must be identified and merged to accurately infer and rank network paths. We extend previous work on deterministic rule-based Entity Resolution with similarity flooding principles to obtain a probabilistic entity matching technique. Our approach outperforms the rule-based approach, allows for domain-specific ontologies to be incorporated, and accounts for provenance across data sources. Using the probabilistic resolutions, we rank network paths according to certainty of the resolutions, which improves network path estimation and contributes to cyber situational awareness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We computed ranked paths using Neo4j’s All Shortest Paths algorithm [1].
References
Neo4j graph database management system. https://neo4j.com/. Accessed 15 July 2010
Achichi, M., Bellahsene, Z., Ellefi, M.B., Todorov, K.: Linking and disambiguating entities across heterogeneous RDF graphs. J. Web Semant. 55, 108–121 (2019). https://doi.org/10.1016/j.websem.2018.12.003
Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: End-to-end entity resolution for big data: A survey. CoRR abs/1905.06397 (2019). http://arxiv.org/abs/1905.06397
Philp, D., Chan, N., Sikos, L.F.: Decision support for network path estimation via automated reasoning. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2019. SIST, vol. 142, pp. 335–344. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8311-3_29. Chap. 29
Dong, L., Rekatsinas, T.: Data integration and machine learning: a natural synergy. PVLDB 11(12), 2094–2097 (2018). https://doi.org/10.14778/3229863.3229876. www.vldb.org/pvldb/vol11/p2094-dong.pdf
Dorneles, C.F., Gonçalves, R., dos Santos Mello, R.: Approximate data instance matching: a survey. Knowl. Inf. Syst. 27(1), 1–21 (2011). https://doi.org/10.1007/s10115-010-0285-0
Kwashie, S., Liu, J., Li, J., Liu, L., Stumptner, M., Yang, L.: Certus: an effective entity resolution approach with graph differential dependencies (gdds). PVLDB 12(6), 653–666 (2019). www.vldb.org/pvldb/vol12/p653-kwashie.pdf
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings 18th International Conference on Data Engineering, pp. 117–128. IEEE (2002)
Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current link discovery frameworks. Semant. Web 8(3), 419–436 (2017). https://doi.org/10.3233/SW-150210
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001). https://doi.org/10.1007/s007780100057
Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013). https://doi.org/10.1109/TKDE.2011.253
Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Automated reasoning over provenance-aware communication network knowledge in support of cyber-situational awareness. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) Knowledge Science, Engineering and Management, pp. 132–143. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-99247-1_12
Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Representing network knowledge using provenance-aware formalisms for cyber-situational awareness. Proc. Comput. Sci. 126, 29–38 (2018)
Sikos, L.F., Stumptner, M., Mayer, W., Philp, M.D., Voigt, M.S., Howard, C.: Provenance-aware lod datasets for detecting network inconsistencies. In: CEUR Workshop Proceedings of Contextualized Knowledge Graphs and Semantic Statistics, vol. 2317 (2018)
To, A., Meymandpour, R., Davis, J.G., Jourjon, G., Chan, J.: A linked data quality assessment framework for network data. In: Proceedings of the 2nd Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), GRADES-NDA 2019, pp. 4:1–4:8. ACM, New York (2019). https://doi.org/10.1145/3327964.3328493
Wang, J., Li, G., Yu, J.X., Feng, J.: Entity matching: how similar is similar. PVLDB 4(10), 622–633 (2011). https://doi.org/10.14778/2021017.2021020. www.vldb.org/pvldb/vol4/p622-wang.pdf
Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge embeddings. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 4258–4264, Melbourne, Australia, 19–25 August 2017 (2017). https://doi.org/10.24963/ijcai.2017/595
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Philp, D., Chan, N., Mayer, W. (2019). Network Path Estimation in Uncertain Data via Entity Resolution. In: Le, T., et al. Data Mining. AusDM 2019. Communications in Computer and Information Science, vol 1127. Springer, Singapore. https://doi.org/10.1007/978-981-15-1699-3_16
Download citation
DOI: https://doi.org/10.1007/978-981-15-1699-3_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1698-6
Online ISBN: 978-981-15-1699-3
eBook Packages: Computer ScienceComputer Science (R0)