Abstract
The analysis of time series is an important field of research in data mining. This includes different sub areas like trend analysis, outlier detection, forecasting or simply the comparison of multiple time series. Clustering is also an equally important and vast field in time series analysis. Different clustering algorithms provide different analysis aspects like the detection of classes or outliers. There are various approaches how to apply cluster algorithms to time series. Previous work either extracted subsequences or feature sets as an input for cluster algorithms. A rarely used but important approach in clustering of time series is the grouping of data points per point in time. Based on this technique we present a method which analyses the transitions of time series between clusters over time. We evaluate our approach on multiple multivariate time series of different data sets. We discover conspicuous behaviors in relation to groups of sequences and provide a robust outlier detection algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)
Ahmar, A.S., et al.: Modeling data containing outliers using ARIMA additive outlier (ARIMA-AO). J. Phys: Conf. Ser. 954, 012010 (2018)
Banerjee, A., Ghosh, J.: Clickstream clustering using weighted longest common subsequences. In: Proceedings of the Web Mining Workshop at the 1st SIAM Conference on Data Mining, pp. 33–40 (2001)
Ben-David, S., Von Luxburg, U.: Relating clustering stability to properties of cluster boundaries. In: 21st Annual Conference on Learning Theory (COLT 2008), pp. 379–390 (2008)
Cheng, H., Tan, P.N., Potter, C., Klooster, S.: Detection and characterization of anomalies in multivariate time series. In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 413–424 (2009)
Cho, H., Fryzlewicz, P.: Multiple change-point detection for high-dimensional time series via sparsified binary segmentation (2014)
Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess (with discussion). J. Official Stat. 6, 3–73 (1990)
ASA Statistics Computing and Graphics: Airline on-time performance. http://stat-computing.org/dataexpo/2009/the-data.html. Accessed 15 July 2019
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)
Ferreira, L.N., Zhao, L.: Time series clustering via community detection in networks. Inf. Sci. 326, 227–242 (2016)
Hill, D.J., Minsker, B.S.: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach. Environ. Model Softw. 25(9), 1014–1022 (2010)
Huang, X., Ye, Y., Xiong, L., Lau, R.Y., Jiang, N., Wang, S.: Time series k-means: a new k-means type smooth subspace clustering for time series data. Inf. Sci. 367–368, 1–13 (2016)
Keogh, E., Lonardi, S., Chiu, B.Y.C.: Finding surprising patterns in a time series database in linear time and space. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 550–556 (2002)
Landauer, M., Wurzenberger, M., Skopik, F., Settanni, G., Filzmoser, P.: Time series analysis: unsupervised anomaly detection beyond outlier detection. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 19–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99807-7_2
Lin, J., Keogh, E., Fu, A., Van Herle, H.: Approximations to magic: finding unusual medical time series. In: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS 2005), pp. 329–334 (2005)
Liu, S., Yamada, M., Collier, N., Sugiyama, M.: Change-point detection in time-series data by relative density-ratio estimation. Neural Netw. 43, 72–83 (2013)
Malhotra, P., Vig, L., Shroff, G.M., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: ESANN (2015)
Munir, M., Siddiqui, S.A., Chattha, M.A., Dengel, A., Ahmed, S.: FuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models. Sensors 19(11), 2451 (2019)
Paparrizos, J., Gravano, L.: k-shape: efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1855–1870 (2015)
Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)
Sun, P., Chawla, S., Arunasalam, B.: Mining for outliers in sequential databases. In: ICDM, pp. 94–106 (2006)
Truong, C.D., Anh, D.T.: A novel clustering-based method for time series motif discovery under time warping measure. Int. J. Data Sci. Anal. 4(2), 113–126 (2017)
Zhou, Y., Zou, H., Arghandeh, R., Gu, W., Spanos, C.J.: Non-parametric outliers detection in multiple time series a case study: power grid data analysis. In: AAAI (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tatusch, M., Klassen, G., Bravidor, M., Conrad, S. (2019). Show Me Your Friends and I’ll Tell You Who You Are. Finding Anomalous Time Series by Conspicuous Cluster Transitions. In: Le, T., et al. Data Mining. AusDM 2019. Communications in Computer and Information Science, vol 1127. Springer, Singapore. https://doi.org/10.1007/978-981-15-1699-3_8
Download citation
DOI: https://doi.org/10.1007/978-981-15-1699-3_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1698-6
Online ISBN: 978-981-15-1699-3
eBook Packages: Computer ScienceComputer Science (R0)