Abstract
Translation quality estimation (QE) has been attracting increasing attention due to its potential to reduce post-editing human effort. However, QE still suffers heavily from the problem that the quality annotation data remain expensive and small. In this paper, we focus on overcoming the limitation of QE data and explore to utilize the high level latent features learned by the pre-trained language models to reduce the model’s dependence on QE data and improve QE performance. Specifically, we propose two strategies to integrate the pre-trained language features into QE model: (1) a mixed integration model, where the pre-trained language features are fed into the QE mode combined with other features; and (2) a constrained integration model, where a constraint mechanism is used to adjust the reporting bias of our first integration model and enhance the robustness of the QE model. Experimental results on WMT17 QE task demonstrate the effectiveness of our approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Proceedings of ICLR 2015 (2015)
Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1601.03317 (2017)
Felice, M., Specia, L.: Linguistic features for quality estimation. In: Proceedings of the 7th Workshop on Statistical Machine Translation, pp. 96–103. Association for Computational Linguistics (2012)
Specia, L., Shah, K., de Souza, J.G., Cohn, T.: QuEst - a translation quality estimation framework. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 79–84. Association for Computational Linguistics (2013)
Kozlova, A., Shmatova, M., Frolov, A.: YSDA participation in the WMT 2016 quality estimation shared task. In: Proceedings of the 1st Conference on Machine Translation, pp. 793–799. Association for Computational Linguistics (2016)
Kreutzer, J., Schamoni, S., Riezler, S.: QUality estimation from ScraTCH (QUETCH): deep learning for word-level translation quality estimation. In: Proceedings of the 10th Workshop on Statistical Machine Translation, pp. 316–322. Association for Computational Linguistics (2015)
Martins, A.F.T., Astudillo, R., Hokamp, C., Kepler, F.: Unbabel’s participation in the WMT16 wordlevel translation quality estimation shared task. In: Proceedings of the 1st Conference on Machine Translation, pp. 806–811. Association for Computational Linguistics (2016)
Kim, H., Jung, H.-Y., Kwon, H., Lee, J.-H., Na, S.-H.: Predictor-estimator: neural quality estimation based on target word prediction for machine translation. ACM Trans. Asian Low-Resour. Lang. Inf. Process. (TALLIP) 17(1), 3 (2017)
Fan, K., Wang, J., Li, B., et al.: “Bilingual Expert” can find translation errors. In: National Conference on Artificial Intelligence (2019)
Peters, M.E., Neumann, M., Iyyer, M., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding with unsupervised learning. Technical report, OpenAI (2018)
Devlin, J., Chang, M.W., Lee, K., et al.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)
Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. arXiv preprint arXiv:1601.03317 (2017)
Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of EMNLP 2015, pp. 1412–1421 (2015)
Dai, A.M., Le, Q.V.: Semi-supervised sequence learning. In: Advances in Neural Information Processing Systems, pp. 3079–3087 (2015)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS (2013)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)
Wu, Y., Schuster, M., Chen, Z., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)
Dyer, C., Chahuneau, V., Smith, N.A.: A simple, fast, and effective reparameterization of IBM model 2. In: Proceedings of NAACL 2013 (2013)
Gordon, J., Van Durme, B.: Reporting bias and knowledge acquisition. In: Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, pp. 25–30. ACM (2013)
Yang, Z., Dai, Z., Yang, Y., et al.: XLNet: generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237 (2019)
Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of ACL 2016, pp. 1715–1725 (2016)
Acknowledgements
This work is supported by the National Nature Science Foundation of China (Nos. 61370130, 61976015, 61473294 and 61876198), the Fundamental Research Funds for the Central Universities (2015JBM033), the International Science and Technology Cooperation Program of China under grant No. K11F100010, the Fundamental Research Funds for the Central Universities (No. 2018YJS043), Major Projects of Fundamental Research on Philosophy and Social Sciences of Henan Education Department (2016-JCZD-022), and Toshiba (China) Co., Ltd.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Miao, G., Di, H., Xu, J., Yang, Z., Chen, Y., Ouchi, K. (2019). Improving Quality Estimation of Machine Translation by Using Pre-trained Language Representation. In: Huang, S., Knight, K. (eds) Machine Translation. CCMT 2019. Communications in Computer and Information Science, vol 1104. Springer, Singapore. https://doi.org/10.1007/978-981-15-1721-1_2
Download citation
DOI: https://doi.org/10.1007/978-981-15-1721-1_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1720-4
Online ISBN: 978-981-15-1721-1
eBook Packages: Computer ScienceComputer Science (R0)