Skip to main content

A Latent Variable CRF Model for Labeling Prediction

  • Conference paper
  • First Online:
Multidisciplinary Social Networks Research (MISNC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1131))

Included in the following conference series:

  • 425 Accesses

Abstract

A latent variable conditional random fields (CRF) model is proposed to improve sequence labeling, which utilizes the BIO encoding schema as latent variable to capture the latent structure of hidden variables and observation data. The proposed model automatically selects the best encoding schema for each given input sequence. Through experimentation, it is demonstrated that the proposed model unveils the latent variable while performing robustly on sequence-labeling prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baum, L.E.: An inequality and associated maximization technique in statistical estimation of probabilistic functions of a markov process. Inequalities 3, 1–8 (1972)

    Google Scholar 

  2. Baum, L.E., Eagon, J.A.: An inequality with applications to statistical estimation for probabilistic functions of markov processes and to a model for ecology. Bull. Am. Math. Soc. 37(3), 360–363 (1967)

    Article  MathSciNet  Google Scholar 

  3. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)

    Article  MathSciNet  Google Scholar 

  4. Berger, A.L., Pietra, S.A.D., Pietra, V.J.D.: A maximum entropy approach to natural language processing. Comput. Linguist. 22(1), 39–71 (1996)

    Google Scholar 

  5. Cuong, N.V., Ye, N., Lee, W.S., Chieu, H.L.: Conditional random field with high-order dependencies for sequence labeling and segmentation. J. Mach. Learn. Res. 15(1), 981–1009 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Dai, H., Lai, P., Chang, Y., Tsa, R.T.: Enhancing of chemical compound and drug name recognition using representative tag scheme and fine-grained tokenization. J. Cheminformatics 7(1), 1–10 (2015)

    Article  Google Scholar 

  7. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: analysis and applications. Mach. Learn. 32(1), 41–62 (1998)

    Article  Google Scholar 

  8. Guo, S., Chang, M.W., Kiciman, E.: To link or not to link? a study on end-to-end tweet entity linking. In: The Conference of the North American Chapter of the Association of Computational Linguistics, pp. 1020–1030 (2013)

    Google Scholar 

  9. Gupta , P., Andrassy, B.: Table filling multi-task recurrent neural network for joint entity and relation extraction. In: The International Conference on Computational Linguistics, pp. 2537–2547 (2016)

    Google Scholar 

  10. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging (2015). http://arxiv.org/abs/1508.01991s

  11. Lafferty, J.D., Mccallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: The Eighteenth International Conference on Machine Learning, pp. 282–289 (2001)

    Google Scholar 

  12. Liu, Y., Che, W., Guo, J., Bin, Q., Liu, T.: Exploring segment representations for neural segmentation models. In: The International Joint Conference on Artificial Intelligence, pp. 2880–288 (2016)

    Google Scholar 

  13. Lu, J., Venugopal, D., Gogate, V., Ng, V.: Joint inference for event coreference resolution. In: The International Conference on Computational Linguistics, pp. 3264–3275 (2016)

    Google Scholar 

  14. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF. In: The Annual Meeting of the Association for Computational Linguistics, pp. 1064–1074 (2016)

    Google Scholar 

  15. McCallum, A., Freitag, D., Pereira, F.C.N.: Maximum entropy Markov models for information extraction and segmentation. In: The International Conference on Machine Learning, pp. 591–598 (1999)

    Google Scholar 

  16. Mintz, M., Bills, R.S.S., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: The Annual Meeting of the Association for Computational Linguistics, pp. 1003–1011 (2009)

    Google Scholar 

  17. Muis, A.O., Lu, W.: Weak semi-Markov CRFS for noun phrase chunking in informal text. In: The North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 714–719 (2016)

    Google Scholar 

  18. Nguyen, V.C., Lee, W.S., Ye, N., Hai, L.C.: Semi-Markov conditional random field with high-order feature, pp. 1–4 (2011)

    Google Scholar 

  19. Okanohara, D., Miyao, Y., Tsuruoka, Y., Tisuji, J.: Improving the scalability of semi-Markov conditional random fields for named entity recognition. In: The Annual Meeting of the Association for Computational Linguistics, pp. 465–472 (2006)

    Google Scholar 

  20. Petrov, S., Dan, K.: Sparse multi-scale grammars for discriminative latent variable parsing. In: The Conference on Empirical Methods in Natural Language Processing, pp. 867–876 (2008)

    Google Scholar 

  21. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: The Conference on Computational Natural Language Learning, pp. 147–155 (2009)

    Google Scholar 

  22. Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: The Conference on Empirical Methods in Natural Language Processing, pp. 133–142 (1996)

    Google Scholar 

  23. Rei, M., Crichton, G.K.O., Pyysalo, S.: Attending to characters in neural sequence labeling models (2016). http://arxiv.org/abs/1611.04361

  24. Rosenberg, D.S., Dan, K., Taskar, B.: Mixture-of-parents maximum entropy Markov models (2012). http://arxiv.org/abs/1206.5261

  25. Sarawagi, S., Cohen, W.W.: Semi-Markov conditional random fields for information extraction. In: The Neural Information Processing Systems, pp. 1185–1192 (2004)

    Google Scholar 

  26. Sun, X., Huang, D., Ren, F.: Detecting new words from chinese text using latent semi-CRF models. IEICE Trans. Inform. Syst. 93(6), 1386–1393 (2010)

    Article  Google Scholar 

  27. Sun, X., Nan, X.: Chinese base phrases chunking based on latent semi-CRF mode. In: The International Conference on Natural Language Processing and Knowledge Engineering, pp. 1–7 (2010)

    Google Scholar 

  28. Tseng, H., Chang, P., Andrew, G., Jurafsky, D., Manning, C.: Sequential labeling with latent variables. In: The Workshop on Chinese Language Processing, pp. 168–171 (2015)

    Google Scholar 

  29. Zhang, H.P., Liu, Q., Cheng, X.Q., Zhang, H., Yu, H.K.: Chinese lexical analysis using hierarchical hidden Markov model. In: The Workshop on Chinese Language Processing, pp. 63–70 (2003)

    Google Scholar 

  30. Zhao, H., Huang, C.N., Li, M., Kudo, T.: An improved Chinese word segmentation system with conditional random field. In: The Workshop on Chinese Language Processing, pp. 162–165 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Ming-Tai Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, J.CW., Wu, J.MT., Shao, Y., Pirouz, M., Zhang, B. (2019). A Latent Variable CRF Model for Labeling Prediction. In: Lin, JW., Ting, IH., Tang, T., Wang, K. (eds) Multidisciplinary Social Networks Research. MISNC 2019. Communications in Computer and Information Science, vol 1131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1758-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1758-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1757-0

  • Online ISBN: 978-981-15-1758-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics