Skip to main content

Sliding Mode Fault Diagnosis with Vision in the Loop for Robot Manipulators

  • Chapter
  • First Online:
New Trends in Robot Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 270))

Abstract

This chapter is devoted to the problem of Fault Diagnosis (FD) for industrial robotic manipulators within the framework of sliding mode control theory. According to this control concept, a set of unknown input higher order sliding mode observers are designed to detect, isolate and identify multiple actuators faults and corruptions. More specifically, the whole FD architecture is based on the inverse dynamics-based feedback linearized robotic MIMO system, which is equivalent to a set of linearized decoupled SISO systems, affected by uncertain terms. The FD process includes a residual generation, followed by a decision making through the evaluation of the achieved residuals. The advantages of the sliding mode approach are the good performance in terms of stability and robustness, as well as satisfactory estimate of the occurring faults. Furthermore, in order to extend the FD strategy to multiple sensor and actuator faults, a low cost vision servoing architecture is used in the scheme, allowing one to design a fault tolerant control strategy in case of sensor faults. The effectiveness of the proposed FD architecture has been carried out in simulation on a realistic simulator as well as experimentally on a COMAU SMART3-S2 anthropomorphic robot manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-Tolerant Control Using Sliding Modes. Advances in Industrial Control. Springer, Berlin (2011)

    Google Scholar 

  2. Bartolini, G., Caputo, W., Cecchi, M., Ferrara, A., Fridman, L.: Vibration damping in elastic robotic structures via sliding modes. J. Robot. Syst. 14(9), 675–696 (1998a)

    Article  Google Scholar 

  3. Bartolini, G., Ferrara, A., Levant, A., Usai, E.: On Second Order Sliding Mode Controllers. Lecture Notes in Control and Information, pp. 329–350. Springer, London (1999)

    MATH  Google Scholar 

  4. Bartolini, G., Ferrara, A., Usai, E.: Adaptive reduction of the control effort in chattering-free sliding-mode control of uncertain nonlinear systems. Appl. Math. Comput. Sci. 8(1), 51–71 (1998b)

    MathSciNet  MATH  Google Scholar 

  5. Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second-order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (1998c)

    Article  MathSciNet  Google Scholar 

  6. Brambilla, D., Capisani, L., Ferrara, A., Pisu, P.: Fault detection for robot manipulators via second-order sliding modes. IEEE Trans. Ind. Electron. 55(11), 3954–3963 (2008)

    Article  Google Scholar 

  7. Capisani, L.M., Ferrara, A., Ferreira de Loza, A., Fridman, L.M.: Manipulator fault diagnosis via higher order sliding-mode observers. IEEE Trans. Ind. Electron. 59(10), 3979–3986 (2012)

    Article  Google Scholar 

  8. Capisani, L.M., Ferrara, A., Magnani, L.: Design and experimental validation of a second-order sliding-mode motion controller for robot manipulators. Int. J. Control 82(2), 365–377 (2009)

    Article  MathSciNet  Google Scholar 

  9. Capisani, L.M., Ferrara, A., Pisu, P.: Sliding mode observers for vision-based fault detection, isolation and identification in robot manipulators. In: Proceedings American Control Conference, pp. 4540–4545. Baltimore, Maryland, USA (2010)

    Google Scholar 

  10. Chiang, L., Braatz, R., Russell, E.: Fault Detection and Diagnosis in Industrial Systems. Advanced Textbooks in Control and Signal Processing. Springer, London (2001)

    Book  Google Scholar 

  11. Davila, J., Fridman, L., Poznyak, A.: Observation and identification of mechanical systems via second order sliding modes. Int. J. Control 79(10), 1251–1262 (2006)

    Article  MathSciNet  Google Scholar 

  12. De Luca, A., Mattone, R.: An adapt-and-detect actuator FDI scheme for robot manipulators. In: Proceedings International Conference on Robotics and Automation, vol. 5, pp. 4975–4980. Barcelona, Spain (2004)

    Google Scholar 

  13. De Luca, A., Mattone, R.: An identification scheme for robot actuator faults. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1127–1131. Alberta, Canada (2005)

    Google Scholar 

  14. Esna Ashari, A., Nikoukhah, R., Campbell, S.: Active robust fault detection in closed-loop systems: Quadratic optimization approach. IEEE Trans. Autom. Control 57(10), 2532–2544 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ferrara, A., Incremona, G.P.: Design of an integral suboptimal second-order sliding mode controller for the robust motion control of robot manipulators. IEEE Trans. Control Syst. Technol. 23(6), 2316–2325 (2015)

    Article  Google Scholar 

  16. Halder, B.: Robust Nonlinear Fault Detection and Isolation of Robotic System: A Novel Nonlinear Analytic Redundancy Method. VDM Verlag, Germany (2009)

    Google Scholar 

  17. Incremona, G.P., Ferrara, A., Magni, L.: MPC for robot manipulators with integral sliding modes generation. IEEE/ASME Trans. Mechatron. 22(3), 1299–1307 (2017)

    Article  Google Scholar 

  18. Incremona, G.P., Saccon, A., Ferrara, A., Nijmeijer, H.: Trajectory tracking of mechanical systems with unilateral constraints: Experimental results of a recently introduced hybrid pd feedback controller. In: Proceedings 54th IEEE Conference on Decision and Control, pp. 920–925. Osaka, Japan (2015)

    Google Scholar 

  19. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin (2006)

    Google Scholar 

  20. Natke, H., Cempel, C.: Model-Aided Diagnosis of Mechanical Systems. Fundamentals, Detection, Localization, Assessment. Springer, London (2011)

    MATH  Google Scholar 

  21. Papadimitropoulos, A., Rovithakis, G.A., Parisini, T.: Fault detection in mechanical systems with friction phenomena: an online neural approximation approach. IEEE Trans. Neural Netw. Learn. Syst. 18(4), 1067–1082 (2007)

    Google Scholar 

  22. Rigatos, G.G.: Fault Diagnosis in Robotic and Industrial Systems, 1st edn. iConcept Press Ltd., Hong Kong (2012)

    Google Scholar 

  23. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2013).

    Google Scholar 

  24. Sangiovanni B., Rendiniello A., Incremona G. P., Ferrara A., Piastra M.: Deep reinforcement learning for collision avoidance of robotic manipulators. In: Proceedings of European Control Conference, pp. 2063–2068 (2018)

    Google Scholar 

  25. Ferrara, A., Incremona, G.P., Sangiovanni, B.: Integral sliding mode based switched structure control scheme for robot manipulators. In: 15th International Workshop on Variable Structure Systems, pp. 168–173 (2018)

    Google Scholar 

  26. Sangiovanni B., Incremona G.P., Ferrara A., Piastra M.: Deep reinforcement learning based self-configuring integral sliding mode control scheme for robot manipulators. In: IEEE Conference on Decision and Control, pp. 5969–5974 (2018)

    Google Scholar 

  27. Scott, J.K., Findeisen, R., Braatz, R.D., Raimondo, D.M.: Input design for guaranteed fault diagnosis using zonotopes. Automatica 50(6), 1580–1589 (2014)

    Article  MathSciNet  Google Scholar 

  28. Siciliano, B., Khatib, O. (eds.): The Handbook of Robotics. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics-Modelling Planning and Control, 3rd edn. Springer, London, (2009)

    Google Scholar 

  30. Simandl, M., Puncochar, I.: Active fault detection and control: unified formulation and optimal design. Automatica 45(9), 2052–2059 (2009)

    Article  MathSciNet  Google Scholar 

  31. Spurgeon, S.K.: Sliding mode observers: a survey. Int. J. Syst. Sci. 39(8), 751–764 (2008)

    Article  MathSciNet  Google Scholar 

  32. Utkin, V.I.: Sliding Modes in Optimization and Control Problems. Springer, New York (1992)

    Book  Google Scholar 

  33. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis: part i: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Paolo Incremona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrara, A., Incremona, G.P., Sangiovanni, B. (2020). Sliding Mode Fault Diagnosis with Vision in the Loop for Robot Manipulators. In: Ghommam, J., Derbel, N., Zhu, Q. (eds) New Trends in Robot Control. Studies in Systems, Decision and Control, vol 270. Springer, Singapore. https://doi.org/10.1007/978-981-15-1819-5_5

Download citation

Publish with us

Policies and ethics