Skip to main content

Exoskeletons Control via Computed Torque for Lower Limb Rehabilitation

  • Chapter
  • First Online:
New Trends in Robot Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 270))

Abstract

Several are the diseases that cause difficulties in walking. This chapter concerns the assistance of deficient kids using a robotic system. In this context, the lokomat appears to be the most suitable system for kids suffering from cerebral palsy. Hence, PID controllers based on feedback linearization and adaptive feedback linearization approaches have been proposed to control 2 DOF exoskeletons which are considered as the fundamental part of the lokomat system. Besides, in order to test the effectiveness and the robustness of these controllers, several cases have been proposed. Simulations were carried out to compare and to show the well desired trajectory tracking in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maalej, B., Jribi, R., Ayadi, N., Abdelhedi F., Derbel, N.: On a robotic application for rehabilitation systems dedicated to kids affected by cerebral palsy. In: International Multi-Conference on Systems, Signals & Devices, pp. 414–419 (2018)

    Google Scholar 

  2. Bouteraa, Y., Ben Abdallah, I.: Exoskeleton robots for upper-limb rehabilitation. In: International Multi-Conference on Systems, Signals & Devices (2016)

    Google Scholar 

  3. Hesse, S., Schmidt, H., Werner, C., Bardeleben, A.: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 16, 705–710 (2003)

    Article  Google Scholar 

  4. Fuhrmann, M.: Andago - the first of its kind mobile robot for rehabilitation is now available in USA. https://www.businesswire.com/news/home/20160322006027/en/Andago---Kind-Mobile-Robot-Rehabilitation-USA’ (2016)

  5. Strickland, E.: Good-bye, Wheelchair, Hello Exoskeleton. https://spectrum.ieee.org/biomedical/bionics/goodbye-wheelchair-hello-exoskeleton (2011)

  6. Colombo, G., Schreier, R., Mayr, A., Plewa, H., Rupp, R.: Novel tilt table with integrated robotic stepping mechanism: design principles and clinical application. In: 9th International Conference on Rehabilitation Robotics, pp. 227–230 (2005)

    Google Scholar 

  7. Bernhardt, M., Frey, M., Colombo, G., Riener, R.: Hybrid force-position control yields cooperative behaviour of the rehabilitation robot lokomat. In: International Conference on Rehabilitation Robotics, pp. 536–539 (2005)

    Google Scholar 

  8. Novak, I.: Evidence-based diagnosis, health care, and rehabilitation for children with cerebral palsy. J. Child Neurol. 29, 1141–1156 (2014)

    Article  Google Scholar 

  9. Whelan, P.J.: Control of locomotion in the decerebrate cat. Prog. Neurobiol. 49, 481–515, 199 (1996)

    Google Scholar 

  10. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Elsevier Sci. 11, 986–996 (2001)

    Google Scholar 

  11. Riener, R., Duschau-Wicke, A., König, A., Bolliger, M., Wieser, M., Vallery, H.: Automation in rehabilitation: how to include the human into the loop. In: World Congress on Medical Physics and Biomedical Engineering, pp. 180–183 (2009)

    Google Scholar 

  12. Zhang, X., Yue, Z., Wang, J.: Robotics in lower-limb rehabilitation after stroke. Behav. Neurol. (2017)

    Google Scholar 

  13. Arakelian, V., Briot, S.: Balancing of Linkages and Robot Manipulators: Advanced Methods with Illustrative Examples, pp. 44–48. Springer, Berlin (2015)

    Google Scholar 

  14. Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37(6), 693–700 (2000)

    Google Scholar 

  15. Système de rééducation démarche robotisé. http://www.medicalexpo.fr/prod/hocoma/product-68750-575453.html

  16. Beyl, P., Van Damme, M., Van Ham, R., Vanderborght, B., Lefeber, D.: Design and control of a lower limb exoskeleton for robot-assisted gait training. Appl. Bionics Biomech. 6(2), 229–243 (2009)

    Article  Google Scholar 

  17. Long, Y., Du, Z.-j., Wang, W., Dong, W.: Development of a wearable exoskeleton rehabilitation system based on hybrid control mode. Int. J. Adv. Robot. Syst. 1–10 (2016)

    Google Scholar 

  18. Biomécanique 3D appliquée aux STAPS. http://biomecanique3d.univ-lyon1.fr/webapp/website/website.html?id=1599660&pageId=1898

  19. Nombres - curiosités, théorie et usages. http://villemin.gerard.free.fr/Biologie/CorpsPro.htm

  20. Duschau-Wicke, A., von Zitzewitz, J., Caprez, A., Lünenburger, L., Riener, R.: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18(1) (2010)

    Google Scholar 

  21. Aurich-Schuler, T., Grob, F., van Hedel, H.J.A. Labruyère, R.: Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J. Neuro Eng. Rehabil. (2017)

    Google Scholar 

  22. Barbeau, H., Visitin, M.: Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 84(10), 1458–1465 (2003)

    Article  Google Scholar 

  23. Wright, F.V.: Adopting new technologies, “Techno-partnering” with a new robotic-assisted treadmill gait trainer for children with cerebral palsy: what paediatric physiotherapists need to consider. Physiotherapy Practice, pp. 22–24 (2016)

    Google Scholar 

  24. http://www.medicalexpo.fr/prod/hocoma/product-68750-773915.html

  25. Abdelhedi, F., Bouteraa, Y., Chemori, A., Derbel, N.: Nonlinear PID and feedforward control of robotic manipulators. In: 15th International Conference on Sciences and Techniques of Automatic Control & Computer Engineering, pp. 349–354 (2015)

    Google Scholar 

  26. Lama, M.A., Kelly, R., Santibañez, V.: Stable computed-torque control of robot manipulators via fuzzy self-tuning. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 30(1) (2000)

    Google Scholar 

  27. Zhao, D., Liang, H., Zhu, Q.: Robust control for robotic manipulators with non-smooth strategy. Int. J. Model. Identif. Control 23(2), 112–120 (2015)

    Article  Google Scholar 

  28. Orlov, Y.: Extended invariance principle for nonautonomous switched systems. IEEE Trans. Autom. Control 48, 1448–1452 (2003)

    Article  MathSciNet  Google Scholar 

  29. Krassovskii, N.N.: Problems of the theory of stability of motion. “Moscow, Russia: Fizmatigiz, 1959. In Russian, English translation, Stanford, CA: Stanford University Press, 1963”

    Google Scholar 

  30. LaSalle, J.P.: Some extensions of Lyapunov’s second method. IRE Trans. Circuit Theory 7, 520–527 (1960)

    Article  Google Scholar 

  31. Jribi, R., Maalej, B., Derbel, N.: Robust adaptive feedback linearization control of human exoskeletons. In: International Conference on Systems, Signals and Devices (2019)

    Google Scholar 

Download references

Acknowledgements

The present work is supported by (i) the “Association de Sauvegarde des Handicapés Moteurs - Sfax” (ASHMS), the (ii) Clinical Investigation Center (CIC) of the Hospitalo—University Center of Sfax (CHU) Tunisia, (iii) the Laboratory “Control & Energy Managements” (CEMLab) of the “National School of Engineering of Sfax”, University of Sfax, Tunisia, and (iv) the Digital Research Center of Sfax, Tunisia (CRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boutheina Maalej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jribi, R., Maalej, B., Derbel, N. (2020). Exoskeletons Control via Computed Torque for Lower Limb Rehabilitation. In: Ghommam, J., Derbel, N., Zhu, Q. (eds) New Trends in Robot Control. Studies in Systems, Decision and Control, vol 270. Springer, Singapore. https://doi.org/10.1007/978-981-15-1819-5_7

Download citation

Publish with us

Policies and ethics