Skip to main content

Convolutional Neural Networks on EEG-Based Emotion Recognition

  • Conference paper
  • First Online:
Big Data (BigData 2019)

Abstract

Human Computer Interaction (HCI) enables people to transfer and exchange information with computers. For the purpose of friendliness, integrating HCI with emotional factors has been intensively investigated. In this paper, an effective method is proposed to recognize human emotions by electroencephalogram (EEG) signals, which record electrical activities of the brain. First of all, the EEG signals are converted to the multispectral image that preserves the local distance between any two nearby electrodes. Notably, our method preserves the features of EEG signals in frequency and spatial dimensions, unlike standard EEG analysis techniques inaccurately interpreting the location of electrodes. And then a Convolutional Neural Network (CNN) model is performed to identify human emotions by virtue of the image containing EEG feature, for the reason of CNN’s significant effect in image recognition. A publicly available dataset, DEAP dataset, is used to validate our algorithm. The results show that the mean classification accuracy is 81.64% for valence (low and high) and 80.25% for arousal (low and high) across 32 subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikipedia. http://en.m.wikipedia.org/wiki/Azimuthal_equidistant_projection. Accessed 10 Jul 2019

  2. Alfeld, P.: A trivariate clough–tocher scheme for tetrahedral data. Comput. Aided Geom. Des. 1(2), 169–181 (1984)

    Article  Google Scholar 

  3. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)

  4. Horlings, R., Datcu, D., Rothkrantz, L.J.: Emotion recognition using brain activity. In: Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing, p. 6. ACM (2008)

    Google Scholar 

  5. Jatupaiboon, N., Pan-ngum, S., Israsena, P.: Emotion classification using minimal EEG channels and frequency bands, pp. 21–24. IEEE (2013)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  7. Koelstra, S., et al.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15

    Article  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. Lahane, P., Sangaiah, A.K.: An approach to EEG based emotion recognition and classification using kernel density estimation. Procedia Comput. Sci. 48, 574–581 (2015). https://doi.org/10.1016/j.procs.2015.04.138. item\_number: S187705091500647X

    Article  Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Li, X., Song, D., Zhang, P., Guangliang, Y., Hou, Y., Hu, B.: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network, pp. 352–359. IEEE (2016)

    Google Scholar 

  12. Liu, J., Meng, H., Nandi, A., Li, M.: Emotion detection from EEG recordings. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 1722–1727. IEEE (2016)

    Google Scholar 

  13. Mert, A., Akan, A.: Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Anal. Appl. 21(1), 81–89 (2018). https://doi.org/10.1007/s10044-016-0567-6. identifier: 567

    Article  MathSciNet  Google Scholar 

  14. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186–197 (2010). https://doi.org/10.1109/TITB.2009.2034649. item\(\_\)number: 5291724

    Article  Google Scholar 

  15. Rozgić, V., Vitaladevuni, S.N., Prasad, R.: Robust EEG emotion classification using segment level decision fusion. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1286–1290. IEEE (2013)

    Google Scholar 

  16. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980). https://doi.org/10.1037/h0077714. identifier: 1981-25062-001

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Thammasan, N., Moriyama, K., Fukui, K.I., Numao, M.: Continuous music-emotion recognition based on electroencephalogram. IEICE Trans. Inf. Syst. E99.D(4), 1234–1241 (2016). https://doi.org/10.1587/transinf.2015EDP7251

    Article  Google Scholar 

  20. Thammasan, N., Moriyama, K., Fukui, K.I., Numao, M.: Familiarity effects in EEG-based emotion recognition. Brain Inform. 4(1), 39–50 (2017). https://doi.org/10.1007/s40708-016-0051-5. identifier: 51

    Article  Google Scholar 

  21. Tripathi, S., Acharya, S., Sharma, R.D., Mittal, S., Bhattacharya, S.: Using deep and convolutional neural networks for accurate emotion classification on deap dataset. In: Twenty-Ninth IAAI Conference (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Sun, X., Dong, Y., Ren, F. (2019). Convolutional Neural Networks on EEG-Based Emotion Recognition. In: Jin, H., Lin, X., Cheng, X., Shi, X., Xiao, N., Huang, Y. (eds) Big Data. BigData 2019. Communications in Computer and Information Science, vol 1120. Springer, Singapore. https://doi.org/10.1007/978-981-15-1899-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1899-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1898-0

  • Online ISBN: 978-981-15-1899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics