Skip to main content

Similarity Evaluation on Labeled Graphs via Hierarchical Core Decomposition

  • Conference paper
  • First Online:
Big Data (BigData 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1120))

Included in the following conference series:

  • 1213 Accesses

Abstract

Graph similarity is essential in network analysis and has been applied to various fields. In this paper, we study the graph similarity between labeled graphs, i.e., every vertex is assigned to a label. Since few methods take account of the structure of a graph and most existing methods cannot extend to massive graphs, we develop a novel graph similarity measure that overcomes the above limitations. Given two labeled graphs, our proposed method first utilizes the concept of k-core to organize the connected cohesive subgraphs of each graph in a tree-like hierarchy. Then, the graph similarity between them is computed from their tree-hierarchies. An efficient algorithm is also developed for the proposed measure. Extensive experiments are conducted on 6 public datasets, where our proposed algorithm successfully identifies similar graphs and extends to large-scale graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://snap.stanford.edu.

  2. 2.

    https://pubchem.ncbi.nlm.nih.gov/.

  3. 3.

    https://dblp.org/.

  4. 4.

    https://dblp.org/xml/release/.

  5. 5.

    https://pubchem.ncbi.nlm.nih.gov/.

References

  1. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in Neural Information Processing Systems, pp. 41–50 (2006)

    Google Scholar 

  2. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Netw. Heterogen. Media 3(2), 371–393 (2008)

    Article  MathSciNet  Google Scholar 

  3. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003)

    Google Scholar 

  4. Berlingerio, M., Koutra, D., Eliassi-Rad, T., Faloutsos, C.: NetSimile: a scalable approach to size-independent network similarity. arXiv preprint arXiv:1209.2684 (2012)

  5. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: the anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

    Article  MathSciNet  Google Scholar 

  6. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl–1), i47–i56 (2005)

    Article  Google Scholar 

  7. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks, pp. 51–62, May 2011. https://doi.org/10.1109/ICDE.2011.5767911

  8. Koutra, D., Vogelstein, J.T., Faloutsos, C.: DELTACON: a principled massive-graph similarity function. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 162–170. SIAM (2013)

    Google Scholar 

  9. Lahav, N., Ksherim, B., Ben-Simon, E., Maron-Katz, A., Cohen, R., Havlin, S.: K-shell decomposition reveals hierarchical cortical organization of the human brain. New J. Phys. 18(8), 083013 (2016)

    Article  Google Scholar 

  10. Li, R.H., et al.: Skyline community search in multi-valued networks. In: Proceedings of the 2018 International Conference on Management of Data, pp. 457–472. ACM (2018)

    Google Scholar 

  11. Li, R.H., Qin, L., Yu, J., Mao, R.: Influential community search in large networks. Proc. VLDB Endow. 8, 509–520 (2015). https://doi.org/10.14778/2735479.2735484

    Article  Google Scholar 

  12. Li, R.H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 797–808. IEEE (2018)

    Google Scholar 

  13. Lü, L., Zhou, T., Zhang, Q.M., Stanley, H.E.: The H-index of a network node and its relation to degree and coreness. Nat. Commun. 7, 10168 (2016)

    Article  Google Scholar 

  14. Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)

    Article  Google Scholar 

  15. Morone, F., Del Ferraro, G., Makse, H.A.: The k-core as a predictor of structural collapse in mutualistic ecosystems. Nat. Phys. 15(1), 95 (2019)

    Article  Google Scholar 

  16. Nikolentzos, G., Meladianos, P., Limnios, S., Vazirgiannis, M.: A degeneracy framework for graph similarity. In: IJCAI, pp. 2595–2601 (2018)

    Google Scholar 

  17. Papadimitriou, P., Dasdan, A., Garcia-Molina, H.: Web graph similarity for anomaly detection. J. Internet Serv. Appl. 1(1), 19–30 (2010)

    Article  Google Scholar 

  18. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  19. Shin, K., Eliassi-Rad, T., Faloutsos, C.: CoreScope: graph mining using k-core analysis–patterns, anomalies and algorithms. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 469–478. IEEE (2016)

    Google Scholar 

  20. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 133–144. IEEE (2016)

    Google Scholar 

  21. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unraveling in social networks. Proc. VLDB Endow. 10(6), 649–660 (2017)

    Article  Google Scholar 

  22. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: efficient (k, r)-core computation on social networks. Proc. VLDB Endow. 10(10), 998–1009 (2017)

    Article  Google Scholar 

  23. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 337–348. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, D., Zhang, F., Lin, J. (2019). Similarity Evaluation on Labeled Graphs via Hierarchical Core Decomposition. In: Jin, H., Lin, X., Cheng, X., Shi, X., Xiao, N., Huang, Y. (eds) Big Data. BigData 2019. Communications in Computer and Information Science, vol 1120. Springer, Singapore. https://doi.org/10.1007/978-981-15-1899-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1899-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1898-0

  • Online ISBN: 978-981-15-1899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics