Skip to main content

Latent Feature Representation for Cohesive Community Detection Based on Convolutional Auto-Encoder

  • Conference paper
  • First Online:
Big Data (BigData 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1120))

Included in the following conference series:

Abstract

It is important to identify community structures for characterizing and understanding complex systems. Community detection models, like stochastic models and modularity maximization models, lack of the ability of nonlinear mapping, which leads to unsatisfactory performance when detecting communities of complex real-world networks. To address this issue, we propose a nonlinear method based on Convolutional Auto-Encoder (ConvAE) to improve the cohesiveness of community detection. We combine the convolution neural network and auto-encoder to improve the ability of nonlinear mapping of the proposed model. Moreover, to better characterize relations between nodes, we redefine the similarity between nodes for preprocessing the input data. We conduct extensive experiments on both the synthetic networks and real-world networks, and the results demonstrate the effectiveness of the proposed method and the superior performance over traditional methods and other deep learning based methods.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  3. Ball, B., Karrer, B., Newman, M.E.J.: Efficient and principled method for detecting communities in networks. Phys. Rev. E 84(2), 036103 (2011)

    Article  Google Scholar 

  4. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  MathSciNet  Google Scholar 

  5. Schölkopf, B., Platt, J., Hofmann, T.: Greedy layer-wise training of deep networks. In: International Conference on Neural Information Processing Systems, pp. 153–160 (2006)

    Google Scholar 

  6. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_31

    Chapter  MATH  Google Scholar 

  7. Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational mode. In: National Conference on Artificial Intelligence, pp. 381–388 (2006)

    Google Scholar 

  8. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing, pp. 41–43. ACM, Quezon City (1993)

    MATH  Google Scholar 

  9. Liou, C.Y., Cheng, W.C., Liou, J.W., Liou, D.R.: Autoencoder for words. Neurocomputing 139(139), 84–96 (2014)

    Article  Google Scholar 

  10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  11. Jin, D., Chen, Z., He, D., Zhang, W.: Modeling with node degree preservation can accurately find communities. Math. Biosci. 269, 117–129 (2015)

    Article  MathSciNet  Google Scholar 

  12. Wu, F., Huberman, B.A.: Finding communities in linear time: a physics approach. Eur. Phys. J. B 38(2), 331–338 (2004)

    Article  Google Scholar 

  13. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4–5), 291–294 (1988)

    Article  MathSciNet  Google Scholar 

  14. Psorakis, I., Roberts, S., Ebden, M., Sheldon, B.: Overlapping community detection using Bayesian non-negative matrix factorization. Phys. Rev. E 83(2), 066114 (2011)

    Article  Google Scholar 

  15. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  Google Scholar 

  16. Shang, J.W., Wang, C.K., Xin, X., Ying, X.: Community detection algorithm based on deep sparse auto-encoder. Ruan Jian Xue Bao/J. Softw. 28(3), 648–662 (2017). (in Chinese)

    MATH  Google Scholar 

  17. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state of the art and comparative study. ACM Comput. Surv. 45(4), 1–37 (2013)

    Article  Google Scholar 

  18. Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic blockstructures. Publ. Am. Stat. Assoc. 96(455), 1077–1087 (2001)

    Article  MathSciNet  Google Scholar 

  19. Rohe, K., Chatterjee, S., Yu, B.: Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Stat. 39(4), 1878–1915 (2010)

    Article  MathSciNet  Google Scholar 

  20. Adamic, L., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, vol. 62, no. 1, pp. 36–43. ACM (2005)

    Google Scholar 

  21. Yang, L., Cao, X., He, D., Wang, C., Wang, X.: Modularity based community detection with deep learning. In: International Joint Conference on Artificial Intelligence, pp. 2252–2258 (2016)

    Google Scholar 

  22. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  23. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  24. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821 (2002)

    Article  MathSciNet  Google Scholar 

  25. Gleiser, P.M., Danon, L.: Community structure in Jazz. Adv. Complex Syst. 6(04), 565 (2003)

    Article  Google Scholar 

  26. Horn, R.A., Johnson, C.R.: Matrix Analysis, emphGraduate Texts in Mathematics, pp. 176–180. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  27. Wang, R.S., Zhang, S., Wang, Y., Zhang, X.S., Chen, L.: Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures. Neurocomputing 72(1), 134–141 (2008)

    Article  Google Scholar 

  28. Fortunato, S., Castellano, C.: Community structure in graphs. In: Meyers, R. (ed.) Computational Complexity, pp. 490–512. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1800-9

    Chapter  Google Scholar 

  29. Zhang, S., Wang, R.S., Zhang, X.S.: Uncovering fuzzy community structure in complex networks. Phys. Rev. E 76(4), 046103 (2007)

    Article  Google Scholar 

  30. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(2), 036106 (2007)

    Article  Google Scholar 

  31. Zachary, W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  32. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  33. Zhang, Y., Yeung, D.: Overlapping community detection via bounded nonnegative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 606–614 (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (No. 61672276), Natural Science Foundation of Jiangsu Province of China (No. BK20161406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Shi, W., Shang, L. (2019). Latent Feature Representation for Cohesive Community Detection Based on Convolutional Auto-Encoder. In: Jin, H., Lin, X., Cheng, X., Shi, X., Xiao, N., Huang, Y. (eds) Big Data. BigData 2019. Communications in Computer and Information Science, vol 1120. Springer, Singapore. https://doi.org/10.1007/978-981-15-1899-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1899-7_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1898-0

  • Online ISBN: 978-981-15-1899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics