Abstract
This paper proposes a halftone image reconstruction based on the SLIC (Simple Linear Iterative Clustering) superpixel algorithm and the affinity propagation algorithm. Firstly, the halftone image is segmented based on SLIC superpixel algorithm. Secondly, the affinity propagation algorithm is used to clustering the regions segmented by superpixel Algorithm. After deleting the background, the image is vectorized. The smooth background image is obtained by the linear smoothing filter and nonlinear smoothing filters. Finally, the vectored boundary and smooth background are combined together to get the reconstructed image. The boundary information is effectively retained during the reconstruction. The proposed method can effectively remove the halftone patterns and screen patterns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, Y.F., Guo, J.M.: Dot-diffused halftoning with improved homogeneity. IEEE Trans. Image Process. 24(11), 4581–4591 (2015)
He, Z., Bouman, C.A.: AM/FM halftoning: digital halftoning through simultaneous modulation of dot size and dot density. J. Electron. Imaging 13(2), 286–302 (2004)
Liao, J.R.: Theoretical bounds of direct binary search halftoning. IEEE Trans. Image Process. 24(11), 3478–3487 (2015)
Son, C.H., Choo, H.: Local learned dictionaries optimized to edge orientation for inverse halftoning. IEEE Trans. Image Process. 23(6), 2542–2556 (2014)
Kopf, J., Lischinski, D.: Digital reconstruction of halftoned color comics. ACM Trans. Graph. (TOG) 31(6), 140–149 (2012)
Kipphan, H.: Handbook of Print Media: Technologies and Production Methods. Springer, New York (2001). https://doi.org/10.1007/978-3-540-29900-4
Guo, J.M., Prasetyo, H.: Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Trans. Image Process. 24(3), 1010–1024 (2015)
Kopf, J., Lischinski, D.: Digital reconstruction of halftoned color comics. ACM Trans. Graph. 31(6), 439–445 (2012)
Fung, Y.H., Chan, Y.H.: Blue noise digital color halftoning with multiscale error diffusion. J. Electr. Imaging 23(6), 063013 (2014)
Zhou, Y., Jiang, Z., Zheng, L.: Image analysis based on noise power spectrum. Packag. Eng. 2014(21), 91–95 (2014)
Qu, X., Zhang, F., Liu, B., et al.: Survey on image inverse halftoning and its quality evaluation. Comput. Sci. 43(6A), 110–114 (2016)
Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal energy and designs. J. Complex. 31(3), 293–326 (2015)
Son, C.H., Choo, H.: Color recovery of black-and-white halftoned images via categorized color-embedding look-up tables. Digit. Signal Proc. 28(1), 93–105 (2014)
Sun, B., Li, S., Sun, J.: Scanned image descreening with image redundancy and adaptive filtering. IEEE Trans. Image Process. 23(8), 3698–3710 (2014)
Tang, L., Ni, J., Wang, C., Zhang, R.: A modified kernels-alternated error diffusion watermarking algorithm for halftone images. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 382–394. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92238-4_30
You, X., Du, L., Cheung, Y., et al.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19(12), 3271–3284 (2010)
Stevenson, R.L.: Inverse halftoning via MAP estimation. IEEE Trans. Image Process. 6(4), 574–583 (1997)
Mese, M., Vaidyanathan, P.P.: Look-up table (LUT) method for inverse halftoning. IEEE Trans. Image Process. 10(10), 1566–1578 (2001)
Katkovnik, V., Foi, A., Egiazarian, K., et al.: Directional varying scale approximations for anisotropic signal processing. In: 2004 12th European Signal Processing Conference, pp. 101–104. IEEE (2004)
Wei, X., Yang, Q., Gong, Y., Ahuja, N., Yang, M.H.: Superpixel hierarchy. IEEE Trans. Image Process. 27(10), 4838–4848 (2018)
Ban, Z., Liu, J., Cao, L.: Superpixel segmentation using Gaussian mixture model. IEEE Trans. Image Process. 27(8), 4105–4117 (2018)
Akyilmaz, E., Leloglu, U.M.: Segmentation of SAR images using similarity ratios for generating and clustering superpixels. Electron. Lett. 52(8), 654–656 (2016)
Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Chu, J., Min, H., Liu, L., et al.: A novel computer aided breast mass detection scheme based on morphological enhancement and SLIC superpixel segmentation. Med. Phys. 42(7), 3859–3869 (2015)
Jia, S., Wu, K., Zhu, J., et al.: Spectral-spatial Gabor surface feature fusion approach for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 99, 1–13 (2018)
Yang, H., Huang, C., Wang, F., et al.: Robust semantic template matching using a superpixel region binary descriptor. IEEE Trans. Image Process. 28, 3061–3074 (2019)
Pun, C.M., Chung, J.L.: A two-stage localization for copy-move forgery detection. Inf. Sci. 463, 33–55 (2018)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)
Wikipedia: Affinity propagation (2019). https://en.wikipedia.org/wiki/Affinity_propagation
Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf. Sci. 450, 200–226 (2018)
Xu, Z., Gao, M., Papadakis, G.Z., et al.: Joint solution for PET image segmentation, denoising, and partial volume correction. Med. Image Anal. 46, 229–243 (2018)
Acknowledgement
This research was supported by the Natural Science Foundation of China (No. U1504621) and the Natural Science Foundation of Henan Province (No. 162300410032).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, X., Zhang, B., Zhang, F. (2020). Halftone Image Reconstruction Based on SLIC Superpixel Algorithm. In: Shen, H., Sang, Y. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2019. Communications in Computer and Information Science, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-15-2767-8_12
Download citation
DOI: https://doi.org/10.1007/978-981-15-2767-8_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-2766-1
Online ISBN: 978-981-15-2767-8
eBook Packages: Computer ScienceComputer Science (R0)