Skip to main content

RLWE Commitment-Based Linkable Ring Signature Scheme and Its Application in Blockchain

  • Conference paper
  • First Online:
Blockchain and Trustworthy Systems (BlockSys 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1156))

Included in the following conference series:

Abstract

Aiming at the problems of large key size and low computation efficiency of linkable ring signature (LRS) schemes from lattice, we construct a LRS scheme based on the RLWE (learning with errors from ring) commitment scheme and further apply the proposed LRS scheme to blockchain to construct an anonymous post-quantum cryptocurrency model. Concretely, we first prove through setting parameters reasonably, we can make a RLWE-based commitment scheme to have homomorphism; Then use the RLWE-based homomorphic commitment scheme, combined with the Σ-protocol and Fiat-Shamir heuristic to construct a LRS scheme; Finally, by combining the proposed LRS scheme with blockchain we present an anonymous post-quantum cryptocurrency model. Analysis shows that compared with the previous LRS schemes, since the proposed LRS scheme is constructed based on the intractability of RLWE problem which can be reduced to SVP (shortest vector problem) on lattice, it can both resist the quantum computer attacks and have smaller key size, signature size and higher computational efficiency. The proposed cryptocurrency model uses the proposed LRS scheme to ensure the sender’s anonymity and the one-time stealth address to guarantee the recipient’s anonymity, which can both protect users’ identities and resist quantum attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

    Google Scholar 

  2. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better—how to make bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_29

    Chapter  Google Scholar 

  3. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4139-7_10

    Chapter  Google Scholar 

  4. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin transaction graph. Fut. Internet 5(2), 237–250 (2013)

    Article  Google Scholar 

  5. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2

    Chapter  Google Scholar 

  6. Maxwell, G.: CoinJoin: bitcoin privacy for the real world (2013). https://bitcointalk.org/index.php?topic=279249.0

  7. Bonneau, J., Narayanan, A., Miller, A., et al.: Mixcoin: anonymity for bitcoin with accountable mixes. In: International Conference on Financial Cryptography and Data Security (FC 2014), pp. 486–504 (2014)

    Google Scholar 

  8. Bergan, T., Anderson, O., Devietti, J., et al.: CryptoNote v 2.0 (2013). https://cryptonote.org/whitepaper.pdf

  9. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributede-cash from bitcoin. In: Symposium on Security and Privacy SP2013, pp. 397–411, May 2013. https://doi.org/10.1109/sp.2013.34

  10. Sasson, E.B., Chiesa, A., Garman, C., et al.: Zerocash: decentralized anonymous payments from Bitcoin. In: Security and Privacy (SP 2014), pp. 459–474 (2014)

    Google Scholar 

  11. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  12. Groth, J., Kohlweiss, M.: One-Out-of-Many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9

    Chapter  Google Scholar 

  13. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: CRYPTO. Lecture Notes in Computer Science, vol. 576, pp. 129–140 (1991)

    Google Scholar 

  14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: CRYPTO. Lecture Notes in Computer Science, vol. 263, pp. 186–194 (1986)

    Google Scholar 

  15. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_13

    Chapter  Google Scholar 

  16. Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer, Heidelberg (2005). https://doi.org/10.1007/11424826_65

    Chapter  Google Scholar 

  17. Wang, F.H., Hu, Y.P., Wang, C.X.: A lattice-based ring signature scheme from bonsai trees. J. Electron. Inf. Technol. 32(2), 2400–2403 (2010)

    Article  Google Scholar 

  18. Tian, M.M., Huang, L.S., Yang, W.: Efficient lattice-based ring signature scheme. Jisuanji Xuebao (Chin. J. Comput.) 35(4), 712–718 (2012)

    MathSciNet  Google Scholar 

  19. Wang, S., Zhao, R.: Lattice-Based Ring Signature Scheme under the Random Oracle Model. Eprint Arxiv (2014)

    Google Scholar 

  20. Yang, R., Au, M.H., Lai, J., et al.: Lattice-based techniques for accountable anonymity: composition of abstract stern’s protocols and weak PRF with efficient protocols from LWR. IACR Cryptology ePrint Archive, p. 781 (2017)

    Google Scholar 

  21. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 461–479. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_25

    Chapter  Google Scholar 

  22. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable ring signatures. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1_18

    Chapter  Google Scholar 

  23. Alberto Torres, W.A., et al.: Post-Quantum one-time linkable ring signature and application to ring confidential transactions in blockchain (lattice ringCT v1.0). In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_32

    Chapter  Google Scholar 

  24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  25. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learning with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 1–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_16

    Chapter  Google Scholar 

  26. Liu, J.K., Au, M.H., Susilo, W., et al.: Linkable ring signature with unconditional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61802117), the ‘13th Five-Year’ National Crypto Development Foundation (MMJJ20170122), the Projects of Henan Provincial Department of Science and Technology under Grant (182102310923,192102210280), Key Research Projects of Henan Higher Education Institutions (18A413001,19A520025), Natural Science Foundation of Henan Polytechnic University (T2018-1), Young Backbone Teacher Funded Project of Henan Polytechnic University (2018XQG-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Q. et al. (2020). RLWE Commitment-Based Linkable Ring Signature Scheme and Its Application in Blockchain. In: Zheng, Z., Dai, HN., Tang, M., Chen, X. (eds) Blockchain and Trustworthy Systems. BlockSys 2019. Communications in Computer and Information Science, vol 1156. Springer, Singapore. https://doi.org/10.1007/978-981-15-2777-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2777-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2776-0

  • Online ISBN: 978-981-15-2777-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics