Skip to main content

Digital Self-Interference Cancellation for Low-Cost Full-Duplex Radio Devices

  • Chapter
  • First Online:
Full-Duplex Communications for Future Wireless Networks

Abstract

Wireless inband full-duplex communications, where individual radio devices transmit and receive simultaneously on the same frequency band, has recently been proposed as another step towards the full utilization of the available spectral resources. This chapter concentrates on solving the greatest challenge in wireless inband full-duplex communications, i.e., the self-interference, which refers to the interference produced by the own transmitter. To this end, this chapter provides digital-domain solutions for efficient self-interference cancellation in low-cost full-duplex radios. The proposed digital cancellers are capable of modeling the most prominent radio circuit impairments, in particular the nonlinear distortion produced by the transmitter power amplifier. The digital cancellers are evaluated using an actual inband full-duplex prototype, which contains also other self-interference suppression mechanisms operating in the analog domain. The obtained measurement results show that, with the help of these digital cancellers, the self-interference can be cancelled almost perfectly, proving that true full-duplex operation is indeed possible. Altogether, the own transmit signal is shown to be suppressed in some cases by more than 100 dB, which is one of the highest reported self-interference cancellation performances to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. W. Bliss, P. A. Parker, and A. R. Margetts, “Simultaneous transmission and reception for improved wireless network performance,” in Proc. 14th IEEE/SP Workshop on Statistical Signal Processing (SSP), Aug. 2007, pp. 478–482.

    Google Scholar 

  2. M. Duarte and A. Sabharwal, “Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results,” in Proc. 44th Asilomar Conference on Signals, Systems, and Computers (ASILOMAR), Nov. 2010, pp. 1558–1562.

    Google Scholar 

  3. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel full duplex wireless communication,” in Proc. 16th Annual International Conference on Mobile Computing and Networking (MobiCom), Sep. 2010, pp. 1–12.

    Google Scholar 

  4. Z. Zhang, K. Long, A. V. Vasilakos, and L. Hanzo, “Full-duplex wireless communications: Challenges, solutions, and future research directions,” Proceedings of the IEEE, vol. 104, no. 7, pp. 1369–1409, Jul. 2016.

    Article  Google Scholar 

  5. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1637–1652, Sep. 2014.

    Article  Google Scholar 

  6. D. Korpi, T. Riihonen, V. Syrjälä, L. Anttila, M. Valkama, and R. Wichman, “Full-duplex transceiver system calculations: analysis of ADC and linearity challenges,” IEEE Transactions on Wireless Communications, vol. 13, no. 7, pp. 3821–3836, Jul. 2014.

    Article  Google Scholar 

  7. L. Anttila, D. Korpi, V. Syrjälä, and M. Valkama, “Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers,” in Proc. 47th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov. 2013, pp. 1193–1198.

    Google Scholar 

  8. D. Korpi, M. Heino, C. Icheln, K. Haneda, and M. Valkama, “Compact inband full-duplex relays with beyond 100 dB self-interference suppression: Enabling techniques and field measurements,” IEEE Transactions on Antennas and Propagation, vol. 65, pp. 960–965, Feb. 2017.

    Article  Google Scholar 

  9. D. Korpi, J. Tamminen, M. Turunen, T. Huusari, Y.-S. Choi, L. Anttila, S. Talwar, and M. Valkama, “Full-duplex mobile device: Pushing the limits,” IEEE Communications Magazine, vol. 54, no. 9, pp. 80–87, Sep. 2016.

    Article  Google Scholar 

  10. D. Korpi, “Full-duplex wireless: Self-interference modeling, digital cancellation, and system studies,” Ph.D. dissertation, Tampere University of Technology, Dec. 2017.

    Google Scholar 

  11. D. Pozar, Microwave Engineering. Wiley, 2012.

    Google Scholar 

  12. M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in Proc. 17th Annual International Conference on Mobile computing and Networking (MobiCom), Sep. 2011, pp. 301–312.

    Google Scholar 

  13. D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in Proc. SIGCOMM’13, Aug. 2013, pp. 375–386.

    Google Scholar 

  14. V. Tapio, M. Juntti, A. Pärssinen, and K. Rikkinen, “Real time adaptive RF and digital self-interference cancellation for full-duplex transceivers,” in Proc. 50th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov. 2016, pp. 1558–1562.

    Google Scholar 

  15. M. S. Amjad and O. Gurbuz, “Linear digital cancellation with reduced computational complexity for full-duplex radios,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Mar. 2017.

    Google Scholar 

  16. W. Chung, D. Hong, R. Wichman, and T. Riihonen, “Interference cancellation architecture for full-duplex system with GFDM signaling,” in Proc. 24th European Signal Processing Conference (EUSIPCO), Aug. 2016, pp. 788–792.

    Google Scholar 

  17. M. Chung, M. S. Sim, J. Kim, D. K. Kim, and C. b. Chae, “Prototyping real-time full duplex radios,” IEEE Communications Magazine, vol. 53, no. 9, pp. 56–63, Sep. 2015.

    Google Scholar 

  18. D. Wu, C. Zhang, S. Gao, and D. Chen, “A digital self-interference cancellation method for practical full-duplex radio,” in Proc. IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Aug. 2014, pp. 74–79.

    Google Scholar 

  19. M. S. Sim, M. Chung, D. K. Kim, and C. B. Chae, “Low-complexity nonlinear self-interference cancellation for full-duplex radios,” in Proc. IEEE Globecom Workshops, Dec. 2016.

    Google Scholar 

  20. A. C. M. Austin, A. Balatsoukas-Stimming, and A. Burg, “Digital predistortion of power amplifier non-linearities for full-duplex transceivers,” in Proc. 17th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jul. 2016.

    Google Scholar 

  21. E. Ahmed, A. M. Eltawil, and A. Sabharwal, “Self-interference cancellation with nonlinear distortion suppression for full-duplex systems,” in Proc. 47th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov. 2013, pp. 1199–1203.

    Google Scholar 

  22. D. W. Bliss and Y. Rong, “Full-duplex self-interference mitigation performance in nonlinear channels,” in Proc. 48th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov. 2014, pp. 1696–1700.

    Google Scholar 

  23. M. Emara, M. Faerber, L. G. Baltar, J. Nossek, and K. Roth, “Nonlinear digital self-interference cancellation with reduced complexity for full duplex systems,” in Proc. International ITG Workshop on Smart Antennas (WSA), Mar. 2017.

    Google Scholar 

  24. Z. Luan, H. Qu, J. Zhao, and B. Chen, “Robust digital non-linear self-interference cancellation in full duplex radios with maximum correntropy criterion,” China Communications, vol. 13, no. 9, pp. 53–59, Sep. 2016.

    Article  Google Scholar 

  25. D. Korpi, Y.-S. Choi, T. Huusari, S. Anttila, L. Talwar, and M. Valkama, “Adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio: algorithms and RF measurements,” in Proc. IEEE Global Communications Conference (GLOBECOM), Dec. 2015.

    Google Scholar 

  26. L. Anttila, D. Korpi, E. Antonio-Rodríguez, R. Wichman, and M. Valkama, “Modeling and efficient cancellation of nonlinear self-interference in MIMO full-duplex transceivers,” in Proc. IEEE Globecom Workshops, Dec. 2014, pp. 862–868.

    Google Scholar 

  27. D. Korpi, L. Anttila, and M. Valkama, “Asymmetric full-duplex with contiguous downlink carrier aggregation,” in Proc. 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jul. 2016.

    Google Scholar 

  28. M. Heino, D. Korpi, T. Huusari, E. Antonio-Rodríguez, S. Venkatasubramanian, T. Riihonen, L. Anttila, C. Icheln, K. Haneda, R. Wichman, and M. Valkama, “Recent advances in antenna design and interference cancellation algorithms for in-band full-duplex relays,” IEEE Communications Magazine, vol. 53, no. 5, pp. 91–101, May 2015.

    Article  Google Scholar 

  29. W. Zhao, C. Feng, F. Liu, C. Guo, and Y. Nie, “Polarization mismatch based self-interference cancellation against power amplifier nonlinear distortion in full duplex systems,” in Proc. 26th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Aug. 2015, pp. 256–260.

    Google Scholar 

  30. A. Balatsoukas-Stimming, “Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks,” in Proc. IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2018.

    Google Scholar 

  31. Y. Kurzo, A. Burg, and A. Balatsoukas-Stimming, “Design and implementation of a neural network aided self-interference cancellation scheme for full-duplex radios,” in Proc. 52nd Asilomar Conference on Signals, Systems, and Computers, Oct. 2018, pp. 589–593.

    Google Scholar 

  32. H. Guo, J. Xu, S. Zhu, and S. Wu, “Realtime software defined self-interference cancellation based on machine learning for in-band full duplex wireless communications,” in Proc. International Conference on Computing, Networking and Communications (ICNC), Mar. 2018, pp. 779–783.

    Google Scholar 

  33. M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of full-duplex wireless systems,” IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp. 4296–4307, Dec. 2012.

    Article  Google Scholar 

  34. M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. Ramakrishnan, C. Rice, and N. Shankaranarayanan, “Design and characterization of a full-duplex multiantenna system for WiFi networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1160–1177, Mar. 2014.

    Article  Google Scholar 

  35. M. Duarte, “Full-duplex wireless: Design, implementation and characterization,” Ph.D. dissertation, Rice University, 2012.

    Google Scholar 

  36. E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 680–694, Feb. 2014.

    Article  Google Scholar 

  37. D. Bharadia and S. Katti, “Full duplex MIMO radios,” in Proc. 11th USENIX Conference on Networked Systems Design and Implementation (NSDI), Apr. 2014, pp. 359–372.

    Google Scholar 

  38. B. Debaillie, D. J. van den Broek, C. Lavín, B. van Liempd, E. A. M. Klumperink, C. Palacios, J. Craninckx, B. Nauta, and A. Pärssinen, “Analog/RF solutions enabling compact full-duplex radios,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1662–1673, Sep. 2014.

    Article  Google Scholar 

  39. M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Transactions on Signal Processing, vol. 49, no. 10, pp. 2335–2344, Oct. 2001.

    Article  Google Scholar 

  40. J. K. Cavers and M. W. Liao, “Adaptive compensation for imbalance and offset losses in direct conversion transceivers,” IEEE Transactions on Vehicular Technology, vol. 42, no. 4, pp. 581–588, Nov. 1993.

    Article  Google Scholar 

  41. ETSI, “LTE; evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception (3GPP TS 36.101 version 14.3.0 release 14),” Sophia Antipolis Cedex, France, Jan. 2017.

    Google Scholar 

  42. D. Korpi, L. Anttila, V. Syrjälä, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1674–1687, Sep. 2014.

    Article  Google Scholar 

  43. S. Li and R. D. Murch, “An investigation into baseband techniques for single-channel full-duplex wireless communication systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 4794–4806, Sep. 2014.

    Article  Google Scholar 

  44. Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp. 1567–1592, Fourth Quarter 2013.

    Google Scholar 

  45. T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Transactions on Broadcasting, vol. 54, no. 2, pp. 257–268, Jun. 2008.

    Article  Google Scholar 

  46. ETSI, “LTE; evolved universal terrestrial radio access (E-UTRA); base station (BS) radio transmission and reception (3GPP TS 36.104, version 14.3.0, release 14),” Sophia Antipolis Cedex, France, Mar. 2017.

    Google Scholar 

  47. F. M. Ghannouchi and O. Hammi, “Behavioral modeling and predistortion,” IEEE Microwave Magazine, vol. 10, no. 7, pp. 52–64, Dec. 2009.

    Article  Google Scholar 

  48. F. M. Ghannouchi, “Power amplifier and transmitter architectures for software defined radio systems,” IEEE Circuits and Systems Magazine, vol. 10, no. 4, pp. 56–63, Fourth Quarter 2010.

    Google Scholar 

  49. D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3852–3860, Oct. 2006.

    Article  MATH  Google Scholar 

  50. A. Abdelhafiz, A. Kwan, O. Hammi, and F. M. Ghannouchi, “Digital predistortion of LTE-A power amplifiers using compressed-sampling-based unstructured pruning of Volterra series,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2583–2593, Nov. 2014.

    Article  Google Scholar 

  51. A. S. Tehrani, H. Cao, S. Afsardoost, T. Eriksson, M. Isaksson, and C. Fager, “A comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral models,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 6, pp. 1510–1520, Jun. 2010.

    Article  Google Scholar 

  52. M. Schoukens, R. Pintelon, and Y. Rolain, “Parametric identification of parallel Hammerstein systems,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 12, pp. 3931–3938, Dec. 2011.

    Article  MATH  Google Scholar 

  53. L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Transactions on Communications, vol. 52, no. 1, pp. 159–165, Jan. 2004.

    Article  Google Scholar 

  54. M. Isaksson, D. Wisell, and D. Rönnow, “A comparative analysis of behavioral models for RF power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 348–359, Jan. 2006.

    Article  Google Scholar 

  55. L. Anttila, P. Händel, and M. Valkama, “Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 730–739, Apr. 2010.

    Article  Google Scholar 

  56. D. Korpi, M. Valkama, T. Riihonen, and R. Wichman, “Implementation challenges in full-duplex radio transceiver,” in Proc. XXXIII Finnish URSI Convention on Radio Science, Apr. 2013, pp. 181–184.

    Google Scholar 

  57. B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniter, “Full-duplex bidirectional MIMO: Achievable rates under limited dynamic range,” IEEE Transactions on Signal Processing, vol. 60, no. 7, pp. 3702–3713, Jul. 2012.

    Article  MathSciNet  MATH  Google Scholar 

  58. Q. Gu, RF System Design of Transceivers for Wireless Communications. Springer, 2006.

    Google Scholar 

  59. V. Syrjälä, M. Valkama, L. Anttila, T. Riihonen, and D. Korpi, “Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers,” IEEE Transactions on Wireless Communications, vol. 13, no. 6, pp. 2977–2990, Jun. 2014.

    Article  Google Scholar 

  60. A. Sahai, G. Patel, C. Dick, and A. Sabharwal, “On the impact of phase noise on active cancelation in wireless full-duplex,” IEEE Transactions on Vehicular Technology, vol. 62, no. 9, pp. 4494–4510, Nov. 2013.

    Article  Google Scholar 

  61. T. Riihonen, P. Mathecken, and R. Wichman, “Effect of oscillator phase noise and processing delay in full-duplex OFDM repeaters,” in Proc. 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov. 2012, pp. 1947–1951.

    Google Scholar 

  62. X. Quan, Y. Liu, S. Shao, C. Huang, and Y. Tang, “Impacts of phase noise on digital self-interference cancellation in full-duplex communications,” IEEE Transactions on Signal Processing, vol. 65, no. 7, pp. 1881–1893, Apr. 2017.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Masmoudi and T. Le-Ngoc, “A maximum-likelihood channel estimator for self-interference cancelation in full-duplex systems,” IEEE Transactions on Vehicular Technology, vol. 65, no. 7, pp. 5122–5132, Jul. 2016.

    Article  Google Scholar 

  64. V. Syrjälä, “Analysis and mitigation of oscillator impairments in modern receiver architectures,” Ph.D. dissertation, Tampere University of Technology, 2012.

    Google Scholar 

  65. R. Durrett, Probability: Theory and Examples, 4th ed. Cambridge University Press, 2010.

    Book  MATH  Google Scholar 

  66. Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Transactions on Signal Processing, vol. 55, no. 11, pp. 5407–5424, Nov. 2007.

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Petrovic, W. Rave, and G. Fettweis, “Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation,” IEEE Transactions on Communications, vol. 55, no. 8, pp. 1607–1616, Aug. 2007.

    Article  Google Scholar 

  68. L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Transactions on Communications, vol. 46, no. 5, pp. 580–583, May 1998.

    Article  Google Scholar 

  69. D. Korpi, L. Anttila, and M. Valkama, “Impact of received signal on self-interference channel estimation and achievable rates in in-band full-duplex transceivers,” in Proc. 48th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov. 2014, pp. 975–982.

    Google Scholar 

  70. ——, “Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk,” EURASIP Journal on Wireless Communications and Networking, vol. 2017, no. 1, p. 24, Feb. 2017.

    Google Scholar 

  71. D. Korpi, T. Riihonen, and M. Valkama, “Achievable rate regions and self-interference channel estimation in hybrid full-duplex/half-duplex radio links,” in Proc. 49th Annual Conference on Information Sciences and Systems (CISS), Mar. 2015.

    Google Scholar 

  72. D. Korpi, T. Riihonen, K. Haneda, K. Yamamoto, and M. Valkama, “Achievable transmission rates and self-interference channel estimation in hybrid full-duplex/half-duplex MIMO relaying,” in Proc. 82nd IEEE Vehicular Technology Conference (VTC Fall), Sep. 2015.

    Google Scholar 

  73. S. M. Kay, Fundamentals of Statistical Signal Processing. Prentice Hall, 1993.

    Google Scholar 

  74. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall, 1999.

    Google Scholar 

  75. ——, Adaptive Filter Theory, 3rd ed. Prentice Hall, 1996.

    Google Scholar 

  76. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. Wiley, 2001.

    Book  Google Scholar 

  77. D. Knuth, The Art of Computer Programming, 3rd ed. Addison–Wesley, 1997, vol. 1, Fundamental Algorithms.

    Google Scholar 

  78. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

    Article  Google Scholar 

  79. S. Verdu, “Minimum probability of error for asynchronous Gaussian multiple-access channels,” IEEE Transactions on Information Theory, vol. 32, no. 1, pp. 85–96, Jan. 1986.

    Article  MathSciNet  MATH  Google Scholar 

  80. D. Kivanc, G. Li, and H. Liu, “Computationally efficient bandwidth allocation and power control for OFDMA,” IEEE Transactions on Wireless Communications, vol. 2, no. 6, pp. 1150–1158, Nov. 2003.

    Article  Google Scholar 

  81. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. MIT Press, 2009.

    MATH  Google Scholar 

  82. Texas Instruments Incorporated, “CC2595 RF front-end transmit power amplifier for 2.4 GHz ISM band systems,” Dallas, Texas, USA.

    Google Scholar 

  83. J. Tamminen, M. Turunen, D. Korpi, T. Huusari, Y.-S. Choi, S. Talwar, and M. Valkama, “Digitally-controlled RF self-interference canceller for full-duplex radios,” in Proc. 24th European Signal Processing Conference (EUSIPCO), Aug. 2016, pp. 783–787.

    Google Scholar 

  84. M. Heino, S. Venkatasubramanian, C. Icheln, and K. Haneda, “Design of wavetraps for isolation improvement in compact in-band full-duplex relay antennas,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1061–1070, Mar. 2016.

    Article  MathSciNet  MATH  Google Scholar 

  85. Mini-Circuits, “ZVE-8G+ coaxial amplifier,” Brooklyn, New York, USA.

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support received from the Tampere University of Technology Graduate School, Nokia Foundation, Tuula and Yrjö Neuvo Research Fund, Emil Aaltonen Foundation, and Pekka Ahonen Fund. In addition, we also wish to acknowledge the funding received from Academy of Finland (under the projects #259915 “In-Band Full-Duplex MIMO Transmission: A Breakthrough to High-Speed Low-Latency Mobile Networks”, #301820 “Competitive Funding to Strengthen University Research Profiles”, and #304147 “In-Band Full-Duplex Radio Technology: Realizing Next Generation Wireless Transmission”), Finnish Funding Agency for Technology and Innovation (Tekes, under the projects “Full-Duplex Cognitive Radio” and “TAKE-5”), and Intel Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dani Korpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korpi, D., Anttila, L., Riihonen, T., Valkama, M. (2020). Digital Self-Interference Cancellation for Low-Cost Full-Duplex Radio Devices. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics