Skip to main content

Unsupervised Representation Learning Based on Generative Adversarial Networks

  • Conference paper
  • First Online:
Digital TV and Wireless Multimedia Communication (IFTC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1181))

Abstract

This paper introduces a novel model for learning disentangled representations based on Generative Adversarial Networks. The training model is unsupervised without identity information. Unlike InfoGAN in which the disentangled representation is learnt by getting the variational lower bound of the mutual information indirectly, our method introduces a direct way by adding predicting networks and encoder into GANs and measuring the correlation among the encoder outputs. Experiment results on MNIST demonstrate that the proposed model is more generalizable and robust than InfoGAN. With experiments on Celeba-HQ, we show that our model can extract factorial features with complicate datasets and produce results comparable to supervised models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agakov, D.B.F.: The IM algorithm: a variational approach to information maximization. In: Advances in Neural Information Processing Systems, vol. 16, p. 201 (2004)

    Chapter  Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  4. Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  Google Scholar 

  5. Berthelot, D., Schumm, T., Metz, L.: Began: boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

  6. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4–5), 291–294 (1988)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)

    Google Scholar 

  8. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:1605.09782 (2016)

  9. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory 49, 1858–1860 (2003)

    Article  MathSciNet  Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Advances in Neural Information Processing Systems, pp. 3–10 (1994)

    Google Scholar 

  12. Jolliffe, I.: Principal Component Analysis. Springer, New York (2011)

    MATH  Google Scholar 

  13. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Liu, Y., Wei, F., Shao, J., Sheng, L., Yan, J., Wang, X.: Exploring disentangled feature representation beyond face identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2080–2089 (2018)

    Google Scholar 

  17. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  18. Maaløe, L., Sønderby, C.K., Sønderby, S.K., Winther, O.: Improving semi-supervised learning with auxiliary deep generative models. In: NIPS Workshop on Advances in Approximate Bayesian Inference (2015)

    Google Scholar 

  19. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  20. Makhzani, A., Frey, B.: \(k\)-Sparse autoencoders. Comput. Sci. (2014)

    Google Scholar 

  21. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  23. Mitra, P., Murthy, C., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

    Article  Google Scholar 

  24. Ng, A., et al.: Sparse autoencoder. In: CS294A Lecture Notes, vol. 72, pp. 1–19 (2011)

    Google Scholar 

  25. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Advances in Neural Information Processing Systems, pp. 3546–3554 (2015)

    Google Scholar 

  26. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  27. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016)

Download references

Acknowledgements

We thank the reviewers. This work is supported in part by the Chinese Science Foundation under grant 61771305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Wang, J. (2020). Unsupervised Representation Learning Based on Generative Adversarial Networks. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2019. Communications in Computer and Information Science, vol 1181. Springer, Singapore. https://doi.org/10.1007/978-981-15-3341-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3341-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3340-2

  • Online ISBN: 978-981-15-3341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics