Skip to main content

Building of Chemical Reaction Modules and Design of Chaotic Oscillatory System Based on DNA Strand Displacement

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1160))

  • 893 Accesses

Abstract

DNA strand displacement as a new type of technology has provided different ways to build complex circuits. Research on chemical kinetics is helpful for exploiting the inherent potential property of biomolecular systems. It is common practice to use fluorophore and dark quencher to detect the luminous intensity of DNA chain, so as to determine the concentration of DNA chain. The luminous intensity of fluorophore and dark quencher is positively correlated with the concentration of DNA chain. In this study, six different chemical reaction modules have been designed and been demonstrated validity. The classical theory of chemical reaction networks can be used to describe the biological processes by mathematical modeling. Based on that, we have proposed a 3-variable chaotic oscillatory system and simulated by matlab. The result of simulation is convincing. A 3-variable chaotic oscillatory system as a bridge paves way to make some connection between chaotic oscillatory system and synchronized system in the future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, J., et al.: Entropy-driven DNA logic circuits regulated by DNAzyme. Nucleic Acids Res. 46(16), 8532–8541 (2018)

    Article  Google Scholar 

  2. Yang, J., Jiang, S., Liu, X., Pan, L., Zhang, C.: Aptamer-binding directed DNA origami pattern for logic gates. ACS Appl. Mater. Interfaces 8(49), 34054–34060 (2016)

    Article  Google Scholar 

  3. Yang, J., Song, Z., Liu, S., Zhang, Q., Zhang, C.: Dynamically arranging gold nanoparticles on DNA origami for molecular logic gates. ACS Appl. Mater. Interfaces 8(34), 22451–22456 (2016)

    Article  Google Scholar 

  4. Zhang, C., Yang, J., Jiang, S., Liu, Y., Yan, H.: DNAzyme-mediated DNA origami pattern for logic gates. Nano Lett. 16(1), 736–741 (2016)

    Article  Google Scholar 

  5. Zhang, C., Shen, L., Liang, C., Dong, Y., Yang, J., Xu, J.: DNA sequential logic gate using two-ring DNA. ACS Appl. Mater. Interfaces 8(14), 9370–9376 (2016)

    Article  Google Scholar 

  6. Zou, C., Wei, X., Zhang, Q., Liu, C., Zhou, C., Liu, Y.: Four-analog computation based on DNA strand displacement. ACS Omega 2(8), 4143–4160 (2017)

    Article  Google Scholar 

  7. Sun, J., Li, X., Cui, G., Wang, Y.: One-bit half adder-half subtractor logical operation based on the DNA strand displacement. J. Nanoelectron. Optoelectron. 12(4), 375–380 (2017)

    Article  Google Scholar 

  8. Li, W., Zhang, F., Yan, H., Liu, Y.: DNA based arithmetic function: a half adder based on DNA strand displacement. Nanoscale 8(6), 3775–3784 (2016)

    Article  Google Scholar 

  9. Sun, J., Zhao, X., Fang, J., Wang, Y.: Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn. 94(4), 2879–2887 (2018). https://doi.org/10.1007/s11071-018-4531-4

    Article  Google Scholar 

  10. Cui, G., Zhang, J., Cui, Y., Zhao, T., Wang, Y.: DNA strand-displacement digital logic circuit with fluorescence resonance energy transfer detection. J. Comput. Theor. Nanosci. 12(9), 2095–2100 (2015)

    Article  Google Scholar 

  11. Engelen, W., Wijnands, S.P., Merkx, M.: Accelerating DNA-based computing on a supramolecular polymer. J. Am. Chem. Soc. 140(30), 9758–9767 (2018)

    Article  Google Scholar 

  12. Ito, K., Murayama, Y., Takahashi, M., Iwasaki, H.: Two three-strand intermediates are processed during Rad51-driven DNA strand exchange. Nat. Struct. Mol. Biol. 25(1), 29 (2018)

    Article  Google Scholar 

  13. Guo, Y., et al.: DNA and DNA computation based on toehold-mediated strand displacement reactions. Int. J. Mod. Phys. B 32(18), 1840014 (2018)

    Article  Google Scholar 

  14. Sawlekar, R., Montefusco, F., Kulkarni, V.V., Bates, D.G.: Implementing nonlinear feedback controllers using DNA strand displacement reactions. IEEE Trans. Nanobiosci. 15(5), 443–454 (2016)

    Article  Google Scholar 

  15. Zhang, Z., Fan, T.W., Hsing, I.M.: Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction. Nanoscale 9(8), 2748–2754 (2017)

    Article  Google Scholar 

  16. Barati, K., Jafari, S., Sprott, J.C., Pham, V.T.: Simple chaotic flows with a curve of equilibria. Int. J. Bifurc. Chaos 26(12) (2016). https://doi.org/10.1142/S0218127416300342

  17. Li, C., Sprott, J.C., Xing, H.: Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87(2), 1351–1358 (2016). https://doi.org/10.1007/s11071-016-3118-1

    Article  MATH  Google Scholar 

  18. Zou, C., Wei, X., Zhang, Q.: Visual synchronization of two 3-variable Lotka-Volterra oscillators based on DNA strand displacement. RSC Adv. 8(37), 20941–20951 (2018)

    Article  Google Scholar 

  19. Li, Y., Kuang, Y.: Periodic solutions of periodic delay Lotka-Volterra equations and systems. J. Math. Anal. Appl. 255(1), 260–280 (2001)

    Article  MathSciNet  Google Scholar 

  20. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in R\(^4\). Trans. Am. Math. Soc. 286(2), 557–594 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Zou, C., Wei, X., Zhang, Q., Liu, Y.: Synchronization of chemical reaction networks based on DNA strand displacement circuits. IEEE Access 6, 20584–20595 (2018)

    Article  Google Scholar 

  22. Apraiz, A., Mitxelena, J., Zubiaga, A.: Studying cell cycle-regulated gene expression by two complementary cell synchronization protocols. JoVE (J. Vis. Exp.) (124), e55745 (2017)

    Google Scholar 

  23. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508), 1560–1563 (2001)

    Article  Google Scholar 

  24. Zhang, Q., Wang, X., Wang, X., Zhou, C.: Solving probability reasoning based on DNA strand displacement and probability modules. Comput. Biol. Chem. 71, 274–279 (2017)

    Article  Google Scholar 

  25. Olson, X., Kotani, S., Yurke, B., Graugnard, E., Hughes, W.L.: Kinetics of DNA strand displacement systems with locked nucleic acids. J. Phys. Chem. B 121(12), 2594–2602 (2017)

    Article  Google Scholar 

  26. Lakin, M.R., Stefanovic, D.: Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5(8), 885–897 (2016)

    Article  Google Scholar 

  27. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R and D Program of China for International S and T Cooperation Projects (2017YFE0103900), in part by the Joint Funds of the National Natural Science Foundation of China (U1804262), in part by the State Key Program of National Natural Science of China under Grant 61632002, in part by the National Natural Science of China under Grant 61603348, Grant 61775198, Grant 61603347, and Grant 61572446, in part by the Foundation of Young Key Teachers from University of Henan Province (2018GGJS092), and in part by the Youth Talent Lifting Project of Henan Province (2018HYTP016) and Henan Province University Science and Technology Innovation Talent Support Plan under Grant 20HASTIT027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Wang, Y., Sun, J. (2020). Building of Chemical Reaction Modules and Design of Chaotic Oscillatory System Based on DNA Strand Displacement. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1160. Springer, Singapore. https://doi.org/10.1007/978-981-15-3415-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3415-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3414-0

  • Online ISBN: 978-981-15-3415-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics