Skip to main content

RGB-T Saliency Detection via Robust Graph Learning and Collaborative Manifold Ranking

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1160))

Abstract

Visual saliency detection inspired by brain cognitive mechanisms is an important component of computer vision, aiming at automatically highlight salient visual objects from the image background. In complex real scenarios, integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting saliency detection performance. In this paper, we propose a novel collaborative algorithm for saliency detection by adaptively incorporating information from grayscale and thermal images. Specifically, we first construct an affinity graph model via robust graph learning to characterize the feature similarities and location relationships between two different image patches under each modal. Based on these affinity graphs, a collaborative manifold ranking method cross-modality consistent constraints is designed to effectively and efficiently infer the salient score for each patch. Moreover, we introduce a weight for each modality to describe the reliability, and integrate them into the graph-based manifold ranking scheme to achieve an adaptive weighted fusion of different source data. For optimization, we propose some iterative algorithms to efficiently solve the models with several subproblems. Experiments on the grayscale-thermal datasets demonstrate the superior performance of the new method over the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gade, R., Moeslund, T.: Thermal cameras and applications: a survey. Mach. Vis. Appl. 25(1), 245–262 (2013). https://doi.org/10.1007/s00138-013-0570-5

    Article  Google Scholar 

  2. Li, C., Hu, S., Gao, S., Tang, J.: Real-time grayscale-thermal tracking via Laplacian sparse representation. In: Tian, Q., Sebe, N., Qi, G.J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 54–65. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27674-8_6

    Chapter  Google Scholar 

  3. Li, C., Wang, G., Ma, Y., Zheng, A., Luo, B., Tang, J.: A unified RGB-T saliency detection benchmark: dataset, baselines, analysis and a novel approach (2017)

    Google Scholar 

  4. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.: Saliency detection via graph-based manifold ranking. In: Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

    Google Scholar 

  5. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. TPAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  6. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR (2007)

    Google Scholar 

  7. Qin, Y., Lu, H., Xu, Y., Wang, H.: Saliency detection via cellular automata. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  8. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4), 11 (2013)

    Article  Google Scholar 

  9. Tu, Z., Xia, T., Li, C., Wang, X., Ma, Y.: RGB-T image saliency detection via collaborative graph learning. IEEE Trans. Multimed. 22, 160–173 (2018)

    Article  Google Scholar 

  10. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  11. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  12. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  13. Hripcsak, G., Rothschild, A.: Agreement, the f-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 12(3), 296–298 (2005)

    Article  Google Scholar 

  14. Li, C., Yuan, Y., Cai, W., Xia, Y.: Robust saliency detection via regularized random walks ranking, pp. 2710–2717 (2015)

    Google Scholar 

  15. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)

    Article  Google Scholar 

  16. Tavakoli, H., Rahtu, E., Heikkilä, J.: Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 666–675. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21227-7_62

    Chapter  Google Scholar 

  17. Huang, F., Qi, J., Lu, H., Zhang, L., Ruan, X.: Salientobject detection via multiple instance learning. IEEE Trans. Image Process. 26(4), 1911–1922 (2017)

    Article  MathSciNet  Google Scholar 

  18. Tu, W., He, S., Yang, Q., Chien, S.: Real-time salient object detection with a minimum spanning tree. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  19. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1265–1274 (2015)

    Google Scholar 

  20. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Natural Science Project of Anhui Provincial Education Department (KJ2018A0023), the Guangdong Province Science and Technology Plan Projects (2017B010110011), the Anhui Key Research and Development Plan (1804a09020101), the National Basic Research Program (973 Program) of China (2015CB351705) and the National Natural Science Foundation of China (61906002, 61402002, 61876002 and 61860206004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuanlian Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, D., Li, S., Ding, Z., Luo, B. (2020). RGB-T Saliency Detection via Robust Graph Learning and Collaborative Manifold Ranking. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1160. Springer, Singapore. https://doi.org/10.1007/978-981-15-3415-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3415-7_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3414-0

  • Online ISBN: 978-981-15-3415-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics