Skip to main content

Base Conversion Model Based on DNA Strand Displacement

  • Conference paper
  • First Online:
  • 879 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1160))

Abstract

DNA computing has the advantages of high parallelism and large storage. In this paper, DNA strand displacement techniques are applied to binary to decimal system. In the field of DNA calculation, binary numerical calculation is relatively mature, but it is difficult to implement decimal calculation. So it is very necessary to study the conversion of binary system to decimal system. In this paper, DNA strand displacement are used to construct a logic model that converts binary system into decimal system. The output strand is obtained through DNA strand displacement reaction in the logical device, and the decimal result is judged by the number of hairpin structures formed. The model has good operability, flexibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Guarnieri, F., Bancroft, C.: Use of horizontal strand reaction for DNA-based addition. In: Proceedings of the 2nd DIMACS Workshop on Computers DNA-Based, pp. 159–249 (1996)

    Google Scholar 

  3. Duarnieri, F., Fliss, M., Bancrof, C.: Making DNA add. Science 273, 220–223 (1996)

    Article  Google Scholar 

  4. Oliver, J.: Computation with DNA: matrix multiplication. In: Proccedings of the 2nd DIMACS Workshop on DNA-Based Computers, pp. 236–248 (1996)

    Google Scholar 

  5. LaBean, T., Winfree, E., Reif, J.: Experimental progress in computation by self-assembly of DNA tilings. In: Proceedings 5th DIMACS Workshop on DNA-Based Computers, Cambridge, MA, USA 14 June–15 June, Institute of Technology (1999)

    Google Scholar 

  6. Mao, C., Leabean, T., Reif, J.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  7. Wasiewicz, P., Mulawka, J., Rudnicki, W., et al.: Adding Number With DNA. Prog. Nat. Sci.: Engl. 705–709 (2004)

    Google Scholar 

  8. Yurke, B., Turberfield, A., Mills Jr., A.P., et al.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  9. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  10. Qian, L., et al.: Analogic China map constructed by DNA. Chin. Sci. Bull. 51(24), 2973–2976 (2006)

    Article  Google Scholar 

  11. Andersen, E., Dong, M., Nielsen, M., et al.: DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6), 1213–1218 (2008)

    Article  Google Scholar 

  12. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  13. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)

    Article  Google Scholar 

  14. Douglas, S., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012)

    Article  Google Scholar 

  15. Tomov, T.E., Tsukanov, R., Liber, M., Masoud, R., Plavner, N., Nir, E.: Rational design of DNA motors: fuel optimization through single-molecule fluorescence. J. Am. Chem. Soc. 135, 11935–11941 (2013)

    Article  Google Scholar 

  16. Amir, Y., Ben-Ishay, E., Levner, D., Ittah, S., Abu-Horowitz, A., Bachelet, I.: Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014)

    Article  Google Scholar 

  17. Tikhomirov, G., et al.: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017)

    Article  Google Scholar 

  18. Ong, L., et al.: Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017)

    Article  Google Scholar 

  19. Wagenbauer, K., et al.: Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017)

    Article  Google Scholar 

  20. Bui, H., Shah, S., Mokhtar, R., Song, T., Garg, S., Reif, J.: Localized DNA hybridization strand reactions on DNA origami. ACS Nano 12, 1146–1155 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank every author appeared in the references. This work was supported by National Natural Science Foundation of China [grant number 61672001, 61702008] and [18-163-ZT-005-009-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Yin .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Yin, Z., Cui, J., Tang, Z., Zhang, Q. (2020). Base Conversion Model Based on DNA Strand Displacement. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1160. Springer, Singapore. https://doi.org/10.1007/978-981-15-3415-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3415-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3414-0

  • Online ISBN: 978-981-15-3415-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics