Skip to main content

Resolution Conversion of Volumetric Array Data for Multimodal Medical Image Analysis

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1180))

Included in the following conference series:

Abstract

This paper aims to clarify statistical and geometric properties of linear resolution conversion for registration between different resolutions observed using the same modality. The pyramid transform for higher-dimensional array with rational-order is formulated by means of tensor decomposition. For fast processing of volumetric data, compression of data is an essential task. Three-dimensional extension of the pyramid transform reduces the sizes of the volumetric data by factor 2. Extension of matrix expression of the pyramid transform to the operation of tensors using the mode product of a tensor and matrix derives the pyramid transform for volumetric data of the rational orders. The pyramid transform is achieved by downsampling after linear smoothing. The dual operation of the pyramid transform is achieved by linear interpolation after upsampling. The rational-order pyramid transform is decomposed into upsampling by linear interpolation and the traditional pyramid transform with the integer order. By controlling ratio between upsampling for linear interpolation and downsampling in the pyramid transform, the rational-order pyramid transform is computed. The tensor expression of the volumetric pyramid transform clarifies that the transform yields the orthogonal base systems for any ratios of the rational pyramid transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frank, J. (ed.): Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-69008-7

    Book  Google Scholar 

  2. Nguyen, H.T., Nguyen, L.-T.: The Laplacian pyramid with rational scaling factors and application on image denoising. In: 10th ISSPA, pp. 468–471 (2010)

    Google Scholar 

  3. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 532–540 (1983)

    Article  Google Scholar 

  4. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2, 217–236 (1983)

    Article  Google Scholar 

  5. Thevenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9, 2083–2099 (2000)

    Article  Google Scholar 

  6. Ohnishi, N., Kameda, Y., Imiya, A., Dorst, L., Klette, R.: Dynamic multiresolution optical flow computation. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 1–15. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78157-8_1

    Chapter  Google Scholar 

  7. Kropatsch, W.G.: A pyramid that grows by powers of 2. Pattern Recogn. Lett. 3, 315–322 (1985)

    Article  Google Scholar 

  8. Fletcher, P., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE TMD 23, 995–1005 (2004)

    Google Scholar 

  9. Henn, S., Witsch, K.: Multimodal image registration using a variational approach. SIAM J. Sci. Comput. 25, 1429–1447 (2004)

    Article  MathSciNet  Google Scholar 

  10. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. IJCV 50, 329–343 (2002)

    Article  Google Scholar 

  11. Hermosillo, G., Faugeras, O.: Well-posedness of two nonridged multimodal image registration methods. SIAM J. Appl. Math. 64, 1550–1587 (2002)

    Article  Google Scholar 

  12. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_37

    Chapter  Google Scholar 

  13. Shepp, L.A., Kruskal, J.: Computerized tomography: the new medical X-ray technology. Amer. Math. Monthly 85, 420–439 (1978)

    Article  MathSciNet  Google Scholar 

  14. Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM J. Imaging Sci. 2, 800–833 (2009)

    Article  MathSciNet  Google Scholar 

  15. Inagaki, S., Itoh, H., Imiya, A.: Multiple alignment of spatiotemporal deformable objects for the average-organ computation. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 353–366. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_25

    Chapter  Google Scholar 

  16. Ballester-Ripoll, R., Steiner, D., Pajarola, R.: Multiresolution volume filtering in the tensor compressed domain. IEEE Trans. Visual Comput. Graphics 24, 2714–2727 (2018)

    Article  Google Scholar 

  17. Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: Sobol tensor trains for global sensitivity analysis. Reliab. Eng. Syst. Saf. 183, 311–322 (2019)

    Article  Google Scholar 

  18. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2015)

    Google Scholar 

  19. http://brainweb.bic.mni.mcgill.ca/brainweb/

  20. Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley (2007)

    MATH  Google Scholar 

  21. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  22. Fischer, B., Modersitzki, J.: Ill-posed medicine – an introduction to image registration. Inverse Prob. 24, 1–17 (2008)

    Article  MathSciNet  Google Scholar 

  23. Modersitzki, J.: Numerical Methods for Image Registration. OUP, Oxford (2004)

    MATH  Google Scholar 

  24. Hermosillo, G., Chef d’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. IJCV 50, 329–343 (2002)

    Article  Google Scholar 

  25. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE TMI 16, 187–198 (1997)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the “Multidisciplinary Computational Anatomy and Its Application to Highly Intelligent Diagnosis and Therapy” project funded by a Grant-in-Aid for Scientific Research on Innovative Areas from MEXT, Japan, and by Grants-in-Aid for Scientific Research funded by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Imiya .

Editor information

Editors and Affiliations

Appendix: Discrete Heat Equation

Appendix: Discrete Heat Equation

For the heat equation \( \frac{\partial f}{\partial \tau }=\frac{1}{2}\cdot \frac{\partial ^2 f}{\partial x^2}\) in \(\mathbf{R}^2\times \mathbf{R}_+\), the semi-implicit discretisation with the Neumann boundary condition

$$ \frac{\varvec{f}^{(k+1)}-\varvec{f}^{(k)}}{\tau }=\frac{1}{2}\varvec{D}\varvec{f}^{(k+1)}, $$

and the eigenvalue decomposition of the matrix \(\varvec{D}\) yield the iteration form [20, 21]

$$\begin{aligned} \varvec{f}^{(k+1)}&=\varvec{\varPhi }\left( \varvec{I}-\frac{\tau }{2}\varvec{\varLambda }\right) ^{-k}\varvec{\varPhi }^\top \varvec{f},&\varvec{\varLambda }&=((\lambda _i\delta _{ij})), \end{aligned}$$

where \(\lambda _0>\lambda _2>\cdots >\lambda _{n-1}\), for \(\varvec{f}=(f_0,f_1,\cdots ,f_{n-1})^\top \). This iteration form implies that the discrete scale transform is a linear transform from \(\mathsf {L}\{\varvec{\varphi }_i\}_{i=0}^{n-1}\) to \(\mathsf {L}\{\varvec{\varphi }_i\}_{i=0}^{n-1}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosoya, K., Nozawa, K., Imiya, A. (2020). Resolution Conversion of Volumetric Array Data for Multimodal Medical Image Analysis. In: Cree, M., Huang, F., Yuan, J., Yan, W. (eds) Pattern Recognition. ACPR 2019. Communications in Computer and Information Science, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-15-3651-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3651-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3650-2

  • Online ISBN: 978-981-15-3651-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics