Abstract
In this paper, we propose an Embedded Real-time Monocular SLAM (Simultaneous Localization and Mapping) System for an autonomous indoor mobile robot. Autonomous mobile robots must be able to estimate and maintain the pose of the robot and the map of the environment at the same time. SLAM performs those tasks using one or more external sensors (e.g., LiDAR, Camera, and Inertial Measurement Unit). The previous SLAM system had problems with a sensor size, high power consumption, and high cost. Thus, it is hard to implement on a small indoor robot. We propose an Embedded (small size, low power consumption, and low cost) Real-time Monocular SLAM System which combines an ORB feature extraction-based SLAM (ORB-SLAM), a monocular camera, and a dynamically reconfigurable processor (DRP). This system realizes real-time (30 fps over) and low-power (less than 2 W) SLAM utilizing the hardware accelerating function of DRP. In the future, we will examine the speed-up of all processing and build it into a device.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Frank Tobe. https://robohub.org/latest-research-report-shows-10-4-cagr-for-robotics-to-2025/. Accessed 21 July 2019
Bourque, D.: CUDA-accelerated ORB-SLAM for UAVs (2017)
Suleiman, A., Zhang, Z., Carlone, L., Karaman, S., Sze, V.: Navion: a fully integrated energy-efficient visual-inertial odometry accelerator for autonomous navigation of nano drones. In: 2018 IEEE Symposium on VLSI Circuits, pp. 133–134 (2018)
Weberruss, J., Kleeman, L., Boland, D., Drummond, T.: FPGA acceleration of multilevel ORB feature extraction for computer vision. In: IEEE 2017 27th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–8 (2017)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, vol. 11, no. 1, p. 2 (2011)
Suzuki, M., et al.: Stream applications on the dynamically reconfigurable processor. In: Proceedings of the IEEE International Conference on Field-Programmable Technology (IEEE Cat. No. 04EX921), pp. 137–144 (2004)
Renesas Electronics Corporation Homepage. https://www.renesas.com/jp/ja/products/programmable/accelerator-type-drp.html. Accessed 29 July 2019
Ushiromura, K., Ohkawa, T., Ootsu, K., Baba, T., Yokota, T.: Processing time analysis for accelerating Visual SLAM software. In: Proceedings of the 80th National Convention of IPSJ 2018.1, pp. 125–126 (2018)
Digilent Homepage. https://reference.digilentinc.com/reference/programmable-logic/zybo-z7/reference-manual. Accessed 21 July 2019
Kohn, C.: Partial reconfiguration of a hardware accelerator on Zynq-7000 all programmable SoC devices. Xilinx, XAPP1159 (v1. 0) (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kawashima, K., Katsura, K. (2020). An Embedded Real-Time Monocular SLAM System Utilizing a Dynamically Reconfigurable Processor. In: Cree, M., Huang, F., Yuan, J., Yan, W. (eds) Pattern Recognition. ACPR 2019. Communications in Computer and Information Science, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-15-3651-9_5
Download citation
DOI: https://doi.org/10.1007/978-981-15-3651-9_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3650-2
Online ISBN: 978-981-15-3651-9
eBook Packages: Computer ScienceComputer Science (R0)