Skip to main content

Fast Evolution of CNN Architecture for Image Classification

  • Chapter
  • First Online:
Deep Neural Evolution

Part of the book series: Natural Computing Series ((NCS))

Abstract

The performance improvement of Convolutional Neural Network (CNN) in image classification and other applications has become a yearly event. Generally, two factors are contributing to achieving this envious success: stacking of more layers resulting in gigantic networks and use of more sophisticated network architectures, e.g. modules, skip connections, etc. Since these state-of-the-art CNN models are manually designed, finding the most optimized model is not easy. In recent years, evolutionary and other nature-inspired algorithms have become human competitors in designing CNN and other deep networks automatically. However, one challenge for these methods is their very high computational cost. In this chapter, we investigate if we can find an optimized CNN model in the classic CNN architecture and if we can do that automatically at a lower cost. Towards this aim, we present a genetic algorithm for optimizing the number of blocks and layers and some other network hyperparameters in classic CNN architecture. Experimenting with CIFAR10, CIFAR100, and SVHN datasets, it was found that the proposed GA evolved CNN models which are competitive with the other best models available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darwish, A., Hassanien, A.E., Das, S.: A survey of swarm and evolutionary computing approaches for deep learning. Artif. Intell. Rev., 1–46 (2019)

    Google Scholar 

  2. Iba, H., Noman, N.: New Frontier in Evolutionary Algorithms: Theory and applications. Imperial College Press, London (2011)

    Book  Google Scholar 

  3. Schaffer, J.D., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: International Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992. OGANN-92, pp. 1–37. IEEE, Piscataway (1992)

    Google Scholar 

  4. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep Neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. Preprint. arXiv:1712.06567 (2017)

    Google Scholar 

  5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Preprint. arXiv:1409.1556 (2014)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  8. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 497–504. ACM, New York (2017)

    Google Scholar 

  9. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol. Comput. 24(2), 394–407 (2020)

    Article  Google Scholar 

  10. Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16(5–6), 555–559 (2003)

    Article  Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  12. David, O.E., Greental, I.: Genetic algorithms for evolving deep neural networks. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1451–1452. ACM, New York (2014)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks. Preprint. arXiv:1604.07269 (2016)

    Google Scholar 

  14. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Automatically designing CNN architectures using genetic algorithm for image classification. Preprint. arXiv:1808.03818 (2018)

    Google Scholar 

  15. Sun, Y., Xue, B., Zhang, M.: Automatically evolving CNN architectures based on blocks. Preprint. arXiv:1810.11875 (2018)

    Google Scholar 

  16. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE, Piscataway (2017)

    Google Scholar 

  17. Bakhshi, A., Noman, N., Chen, Z., Zamani, M., Chalup, S.: Fast automatic optimisation of CNN architectures for image classification using genetic algorithm. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1283–1290. IEEE, Piscataway (2019)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. Preprint. arXiv:1502.03167 (2015)

    Google Scholar 

  19. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  20. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, pp. 177–186. Springer, Berlin (2010)

    Chapter  Google Scholar 

  21. Anderson-Cook, C.M.: Practical genetic algorithms. J. Am. Stat. Assoc. 100(471), 1099–1099 (2005)

    Article  Google Scholar 

  22. Malik, S., Wadhwa, S.: Preventing premature convergence in genetic algorithm using DGCA and elitist technique. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(6) (2014)

    Google Scholar 

  23. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  24. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. Preprint. arXiv:1302.4389 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasimul Noman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakhshi, A., Chalup, S., Noman, N. (2020). Fast Evolution of CNN Architecture for Image Classification. In: Iba, H., Noman, N. (eds) Deep Neural Evolution. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-15-3685-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3685-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3684-7

  • Online ISBN: 978-981-15-3685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics