Skip to main content

A Novel Saliency-Based Cascaded Approach for Moving Object Segmentation

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1147))

Included in the following conference series:

Abstract

The existing approaches achieved remarkable performance in many computer vision applications like moving object segmentation (MOS), classification, etc. However, in presence of infrequent motion of foreground objects, bad weather and dynamic background, the accurate foreground-background segmentation is a tedious task. In addition, the computational complexity is a major concern, as the data to be processed is large in case of video analysis. Considering the above mentioned problems, a novel compact motion saliency based cascaded encoder-decoder network is proposed for MOS. To estimate the motion saliency of current frame, background image is estimated using few neighbourhood frames and subtracted from the current frame. Further, to estimate prior foreground probability maps compact encoder-decoder network is proposed. The estimated foreground probability maps are undergoes the problem of spatial coherence where visibility of foreground objects is not clear. To enhance the spatial coherence of obtained foreground probability map, cascaded encoder-decoder network is incorporated. The intensive experimentation is carried out to investigate the efficiency of proposed network with different challenging videos from CDnet-2014 and PTIS database. The segmentation accuracy is verified and compared with existing method in terms of average F-measure. In addition, the compactness of proposed method is analysed in terms of computational complexity and compared with the existing methods. The performance of proposed method is significantly improved as compared to existing methods in terms of accuracy and computational complexity for MOS task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babaee, M., Dinh, D.T., Rigoll, G.: A deep convolutional neural network for video sequence background subtraction. Pattern Recogn. 76, 635–649 (2018)

    Article  Google Scholar 

  2. Bianco, S., Ciocca, G., Schettini, R.: Combination of video change detection algorithms by genetic programming. IEEE Trans. Evol. Comput. 21(6), 914–928 (2017)

    Article  Google Scholar 

  3. Biradar, K.M., Gupta, A., Mandal, M., Vipparthi, S.K.: Challenges in time-stamp aware anomaly detection in traffic videos. arXiv preprint arXiv:1906.04574 (2019)

  4. Braham, M., Piérard, S., Van Droogenbroeck, M.: Semantic background subtraction. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 4552–4556. IEEE (2017)

    Google Scholar 

  5. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chaudhary, S., Murala, S.: Depth-based end-to-end deep network for human action recognition. IET Comput. Vision 13(1), 15–22 (2018)

    Article  Google Scholar 

  7. Chaudhary, S., Murala, S.: TSNet: deep network for human action recognition in hazy videos. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3981–3986. IEEE (2018)

    Google Scholar 

  8. Chen, X., Shen, Y., Yang, Y.H.: Background estimation using graph cuts and inpainting. In: Proceedings of Graphics Interface 2010, Canadian Information Processing Society, pp. 97–103 (2010)

    Google Scholar 

  9. Chen, Y., Wang, J., Zhu, B., Tang, M., Lu, H.: Pixel-wise deep sequence learning for moving object detection. IEEE Trans. Circuits Syst. Video Technol. 29, 2567–2579 (2017)

    Article  Google Scholar 

  10. Dudhane, A., Murala, S.: C\(^{\wedge }\)2MSNet: a novel approach for single image haze removal. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1397–1404. IEEE (2018)

    Google Scholar 

  11. Dudhane, A., Murala, S.: Cardinal color fusion network for single image haze removal. Mach. Vis. Appl. 30(2), 231–242 (2019). https://doi.org/10.1007/s00138-019-01014-y

    Article  Google Scholar 

  12. Dudhane, A., Murala, S.: CDNet: single image de-hazing using unpaired adversarial training. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1147–1155. IEEE (2019)

    Google Scholar 

  13. Guo, X., Wang, X., Yang, L., Cao, X., Ma, Y.: Robust foreground detection using smoothness and arbitrariness constraints. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 535–550. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_35

    Chapter  Google Scholar 

  14. Işık, Ş., Özkan, K., Günal, S., Gerek, Ö.N.: SWCD: a sliding window and self-regulated learning-based background updating method for change detection in videos. J. Electron. Imaging 27(2), 023002 (2018)

    Article  Google Scholar 

  15. Jiang, S., Lu, X.: WeSamBE: a weight-sample-based method for background subtraction. IEEE Trans. Circuits Syst. Video Technol. 28, 2105–2115 (2017)

    Article  Google Scholar 

  16. Liang, C.W., Juang, C.F.: Moving object classification using a combination of static appearance features and spatial and temporal entropy values of optical flows. IEEE Trans. Intell. Transp. Syst. 16(6), 3453–3464 (2015)

    Article  Google Scholar 

  17. Lin, H.H., Liu, T.L., Chuang, J.H.: Learning a scene background model via classification. IEEE Trans. Signal Process. 57(5), 1641–1654 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lin, Y., Tong, Y., Cao, Y., Zhou, Y., Wang, S.: Visual-attention-based background modeling for detecting infrequently moving objects. IEEE Trans. Circuits Syst. Video Technol. 27(6), 1208–1221 (2017)

    Article  Google Scholar 

  19. Patil, P., Murala, S.: FgGAN: a cascaded unpaired learning for background estimation and foreground segmentation. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1770–1778. IEEE (2019)

    Google Scholar 

  20. Patil, P., Murala, S., Dhall, A., Chaudhary, S.: MsEDNet: multi-scale deep saliency learning for moving object detection. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1670–1675. IEEE (2018)

    Google Scholar 

  21. Patil, P.W., Murala, S.: MSFgNET: a novel compact end-to-end deep network for moving object detection. IEEE Trans. Intell. Transp. Syst. 20, 4066–4077 (2018)

    Article  Google Scholar 

  22. Roy, S.M., Ghosh, A.: Real-time adaptive histogram min-max bucket (HMMB) model for background subtraction. IEEE Trans. Circuits Syst. Video Technol. 28(7), 1513–1525 (2018)

    Article  Google Scholar 

  23. Shi, G., Huang, T., Dong, W., Wu, J., Xie, X.: Robust foreground estimation via structured gaussian scale mixture modeling. IEEE Trans. Image Process. 27(10), 4810–4824 (2018)

    Article  MathSciNet  Google Scholar 

  24. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: A self-adjusting approach to change detection based on background word consensus. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 990–997. IEEE (2015)

    Google Scholar 

  25. Thengane, V.G., Gawande, M.B., Dudhane, A.A., Gonde, A.B.: Cycle face aging generative adversarial networks. In: 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp. 125–129. IEEE (2018)

    Google Scholar 

  26. Wang, N., Yao, T., Wang, J., Yeung, D.-Y.: A probabilistic approach to robust matrix factorization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 126–139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_10

    Chapter  Google Scholar 

  27. Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27(1), 38–49 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wang, W., Shen, J., Yang, R., Porikli, F.: Saliency-aware video object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 20–33 (2018)

    Article  Google Scholar 

  29. Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 387–394 (2014)

    Google Scholar 

  30. Wang, Y., Luo, Z., Jodoin, P.M.: Interactive deep learning method for segmenting moving objects. Pattern Recogn. Lett. 96, 66–75 (2017)

    Article  Google Scholar 

  31. Xi, T., Zhao, W., Wang, H., Lin, W.: Salient object detection with spatiotemporal background priors for video. IEEE Trans. Image Process. 26(7), 3425–3436 (2017)

    Article  MathSciNet  Google Scholar 

  32. Yeh, C.H., Lin, C.Y., Muchtar, K., Lai, H.E., Sun, M.T.: Three-pronged compensation and hysteresis thresholding for moving object detection in real-time video surveillance. IEEE Trans. Industr. Electron. 64(6), 4945–4955 (2017)

    Article  Google Scholar 

  33. Yong, H., Meng, D., Zuo, W., Zhang, L.: Robust online matrix factorization for dynamic background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1726–1740 (2018)

    Article  Google Scholar 

  34. Zheng, J., Wang, Y., Nihan, N., Hallenbeck, M.: Extracting roadway background image: mode-based approach. Transp. Res. Rec. J. Transp. Res. Board 1944, 82–88 (2006)

    Article  Google Scholar 

  35. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 597–610 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant W. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patil, P.W., Dudhane, A., Murala, S., Gonde, A.B. (2020). A Novel Saliency-Based Cascaded Approach for Moving Object Segmentation. In: Nain, N., Vipparthi, S., Raman, B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science, vol 1147. Springer, Singapore. https://doi.org/10.1007/978-981-15-4015-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4015-8_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4014-1

  • Online ISBN: 978-981-15-4015-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics