Skip to main content

Unsupervised Single-View Depth Estimation for Real Time Inference

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1147))

Included in the following conference series:

  • 779 Accesses

Abstract

Several approaches using unsupervised methods have been proposed recently to perform the task of depth prediction with higher accuracy. However, none of these approaches are flexible enough to be deployed in the real-time environment with limited computational capabilities. Inference latency is a major factor that limits the application of such methods to the real world scenarios where high end GPUs cannot be deployed. Six models based on three approaches are proposed in this work to reduce inference latency of depth prediction solutions without losing accuracy. The proposed solutions can be deployed in real-world applications with limited computational power and memory. The new models are also compared with the models recently proposed in literature to establish a state of the art depth prediction model that can be used in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrams, A., Hawley, C., Pless, R.: Heliometric stereo: shape from sun position. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 357–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_26

    Chapter  Google Scholar 

  2. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)

    Google Scholar 

  3. Furukawa, Y., Hernández, C., et al.: Multi-view stereo: a tutorial. Found. Trends Comput. Graph. Vis. 9(1–2), 1–148 (2015)

    Article  Google Scholar 

  4. Garg, R., Vijay Kumar, B.G., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  5. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the Kitti dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  6. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  7. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)1mb model size. CoRR (2017)

    Google Scholar 

  8. Karsch, K., Liu, C., Kang, S.B.: Depth transfer: depth extraction from video using non-parametric sampling. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2144–2158 (2014)

    Article  Google Scholar 

  9. Ladickỳ, L., Häne, C., Pollefeys, M.: Learning the matching function. arXiv preprint arXiv:1502.00652 (2015)

  10. Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 89–96. IEEE (2014)

    Google Scholar 

  11. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2024–2039 (2015)

    Article  Google Scholar 

  12. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5667–5675 (2018)

    Google Scholar 

  13. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)

    Google Scholar 

  14. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Auton. Robot. 8(2), 161–171 (2000)

    Article  Google Scholar 

  16. Nath Kundu, J., Krishna Uppala, P., Pahuja, A., Venkatesh Babu, R.: AdaDepth: unsupervised content congruent adaptation for depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2656–2665 (2018)

    Google Scholar 

  17. Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation in complex dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4058–4066 (2016)

    Google Scholar 

  18. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  19. Xie, J., Girshick, R., Farhadi, A.: Deep3D: fully automatic 2D-to-3D video conversion with deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 842–857. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_51

    Chapter  Google Scholar 

  20. Yang, Z., Wang, P., Xu, W., Zhao, L., Nevatia, R.: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  21. Yusiong, J.P.T., Naval, P.C.: AsiaNet: autoencoders in autoencoder for unsupervised monocular depth estimation. In: IEEE Winter Conference on Applications of Computer Vision, pp. 443–451 (2019)

    Google Scholar 

  22. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

  23. Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q.X., Efros, A.A.: Learning dense correspondence via 3D-guided cycle consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 117–126 (2016)

    Google Scholar 

  24. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Arshad Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddiqui, M.A., Jain, A., Gour, N., Khanna, P. (2020). Unsupervised Single-View Depth Estimation for Real Time Inference. In: Nain, N., Vipparthi, S., Raman, B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science, vol 1147. Springer, Singapore. https://doi.org/10.1007/978-981-15-4015-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4015-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4014-1

  • Online ISBN: 978-981-15-4015-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics