Abstract
Several approaches using unsupervised methods have been proposed recently to perform the task of depth prediction with higher accuracy. However, none of these approaches are flexible enough to be deployed in the real-time environment with limited computational capabilities. Inference latency is a major factor that limits the application of such methods to the real world scenarios where high end GPUs cannot be deployed. Six models based on three approaches are proposed in this work to reduce inference latency of depth prediction solutions without losing accuracy. The proposed solutions can be deployed in real-world applications with limited computational power and memory. The new models are also compared with the models recently proposed in literature to establish a state of the art depth prediction model that can be used in real-time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abrams, A., Hawley, C., Pless, R.: Heliometric stereo: shape from sun position. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 357–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_26
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)
Furukawa, Y., Hernández, C., et al.: Multi-view stereo: a tutorial. Found. Trends Comput. Graph. Vis. 9(1–2), 1–148 (2015)
Garg, R., Vijay Kumar, B.G., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the Kitti dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)
Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)1mb model size. CoRR (2017)
Karsch, K., Liu, C., Kang, S.B.: Depth transfer: depth extraction from video using non-parametric sampling. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2144–2158 (2014)
Ladickỳ, L., Häne, C., Pollefeys, M.: Learning the matching function. arXiv preprint arXiv:1502.00652 (2015)
Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 89–96. IEEE (2014)
Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2024–2039 (2015)
Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5667–5675 (2018)
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)
Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: International Conference on Learning Representations (2017)
Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Auton. Robot. 8(2), 161–171 (2000)
Nath Kundu, J., Krishna Uppala, P., Pahuja, A., Venkatesh Babu, R.: AdaDepth: unsupervised content congruent adaptation for depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2656–2665 (2018)
Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation in complex dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4058–4066 (2016)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)
Xie, J., Girshick, R., Farhadi, A.: Deep3D: fully automatic 2D-to-3D video conversion with deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 842–857. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_51
Yang, Z., Wang, P., Xu, W., Zhao, L., Nevatia, R.: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Yusiong, J.P.T., Naval, P.C.: AsiaNet: autoencoders in autoencoder for unsupervised monocular depth estimation. In: IEEE Winter Conference on Applications of Computer Vision, pp. 443–451 (2019)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)
Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q.X., Efros, A.A.: Learning dense correspondence via 3D-guided cycle consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 117–126 (2016)
Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Siddiqui, M.A., Jain, A., Gour, N., Khanna, P. (2020). Unsupervised Single-View Depth Estimation for Real Time Inference. In: Nain, N., Vipparthi, S., Raman, B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science, vol 1147. Springer, Singapore. https://doi.org/10.1007/978-981-15-4015-8_9
Download citation
DOI: https://doi.org/10.1007/978-981-15-4015-8_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-4014-1
Online ISBN: 978-981-15-4015-8
eBook Packages: Computer ScienceComputer Science (R0)