Skip to main content

Understanding Abstraction in Deep CNN: An Application on Facial Emotion Recognition

  • Chapter
  • First Online:
Progresses in Artificial Intelligence and Neural Systems

Abstract

Facial Emotion Recognition (FER) is the automatic processing of human emotions by means of facial expression analysis [1]. The most common approach exploits 3D Face Descriptors (3D-FD) [2], which derive from depth maps [3] by using mathematical operators. In recent years, Convolutional Neural Networks (CNNs) have been successfully employed in a wide range of tasks including large-scale image classification systems and to overcome the hurdles in facial expression classification. Based on previous studies, the purpose of the present work is to analyze and compare the abstraction level of 3D face descriptors with abstraction in deep CNNs. Experimental results suggest that 3D face descriptors have an abstraction level comparable with the features extracted in the fourth layer of CNN, the layer of the network having the highest correlations with emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Eureqa Formulize is developed by Nutonian, Inc. https://www.nutonian.com/products/eureqa/.

References

  1. Ekman, P.: Facial expression and emotion. Am. Psychol. 48(4), 384 (1993)

    Google Scholar 

  2. Vezzetti, E., Marcolin, F.: Geometrical descriptors for human face morphological analysis and recognition. Robot. Auton. Syst. 60, 928–939, 06 (2012)

    Google Scholar 

  3. Nonis, F., Dagnes, N., Marcolin, F., Vezzetti, E.: 3d approaches and challenges in facial expression recognition algorithmsa literature review. Appl. Sci. 9(18), 3904 (2019)

    Article  Google Scholar 

  4. Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., Morabito, F.C.: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings. Neurocomputing 323, 96–107 (2019)

    Google Scholar 

  5. Ieracitano, C., Adeel, A., Morabito, F.C., Hussain, A.: A novel statistical analysis and autoencoder driven intelligent intrusion detection approach. Neurocomputing (2019)

    Google Scholar 

  6. Huynh, P., Tran T.-D., Kim, Y.-G.: Convolutional Neural Network Models for Facial Expression Recognition Using 3D-BUFE Database, pp. 441–450 (2016)

    Google Scholar 

  7. Chen, Z., Huang, D., Wang, Y., Chen, L.: Fast and light manifold CNN based 3d facial expression recognition across pose variations, pp. 229–238 (2018)

    Google Scholar 

  8. Li, H., Sun, J., Zongben, X., Chen, L.: Multimodal 2d+ 3d facial expression recognition with deep fusion convolutional neural network. IEEE Trans. Multimed. 19(12), 2816–2831 (2017)

    Article  Google Scholar 

  9. Yang, H., Yin, L.: CNN based 3d facial expression recognition using masking and landmark features. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 556–560. IEEE (2017)

    Google Scholar 

  10. Oyedotun, O.K., Demisse, G., Rahman Shabayek, A.E., Aouada, D., Ottersten, B.: Facial expression recognition via joint deep learning of RGB-depth map latent representations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3161–3168 (2017)

    Google Scholar 

  11. Russell, B.: Principles of Mathematics. Routledge (2009)

    Google Scholar 

  12. Ferrari, P.L.: Abstraction in mathematics. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 358(1435), 1225–1230 (2003)

    Google Scholar 

  13. Bracewell, R.N., Bracewell, R.N.: The Fourier Transform and Its Applications, vol. 31999. McGraw-Hill, New York (1986)

    Google Scholar 

  14. Papoulis, A.: The Fourier Integral and Its Applications. McGraw-Hill (1962)

    Google Scholar 

  15. Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Bosphorus database for 3d face analysis. In: European Workshop on Biometrics and Identity Management, pp. 47–56. Springer, Berlin (2008)

    Google Scholar 

  16. Friesen, E., Ekman, P.: Facial action coding system: a technique for the measurement of facial movement. Palo Alto 3 (1978)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Marcolin, F., Vezzetti, E.: Novel descriptors for geometrical 3d face analysis. Multimed. Tools Appl. 76, 07 (2016)

    Google Scholar 

  19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  21. Pearson, K.: Vii. note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 58(347–352), 240–242 (1895)

    Google Scholar 

  22. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press (1992)

    Google Scholar 

  23. Schmidt, M., Lipson, M.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Google Scholar 

  24. Shorten. C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Google Scholar 

  25. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodological) 36(2), 111–133 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Nonis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nonis, F., Barbiero, P., Cirrincione, G., Olivetti, E.C., Marcolin, F., Vezzetti, E. (2021). Understanding Abstraction in Deep CNN: An Application on Facial Emotion Recognition. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Progresses in Artificial Intelligence and Neural Systems. Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https://doi.org/10.1007/978-981-15-5093-5_26

Download citation

Publish with us

Policies and ethics